
Software User Guide
Release v1.13.0

OS1-16/64 High Resolution Imaging Lidar

Nov 07, 2019

Software User Guide
1 Introduction 3

2 Safety & Legal Notices 3

3 Drivers & Interface 4
3.1 Network Configuration . 4
3.2 HTTP Interface . 6
3.3 TCP API Command Set . 9
3.4 Lidar Data Format . 20
3.5 IMU Data Format . 21
3.6 Data Rates . 21

4 Coordinate Frames 22
4.1 Sensor Coordinate Frame . 22
4.2 Lidar Intrinsic Beam Angles . 23
4.3 Lidar Range Data To XYZ Lidar Coordinate Frame . 23
4.4 Lidar Range Data To Sensor XYZ Coordinate Frame . 24
4.5 IMU Data To Sensor XYZ Coordinate Frame . 24

5 Time Synchronization 25
5.1 Timing Overview Diagram . 25
5.2 Sensor Time Source . 26
5.3 External Trigger Clock Source . 28
5.4 NMEA Message Format . 29

6 Updating Firmware 30

7 Troubleshooting 31

8 HTTP API Reference 38
8.1 system/firmware . 38
8.2 system/network . 38
8.3 system/time . 41

9 PTP Quickstart Guide 48
9.1 Assumptions . 48
9.2 Physical Network Setup . 49
9.3 Third Party Grandmaster Clock . 49
9.4 Linux PTP Grandmaster Clock . 49
9.5 Verifying Operation . 57
9.6 Tested Grandmaster Clocks . 58

HTTP Routing Table 60

2

1 Introduction

The OS1 family of sensors offer a market leading combination of price, performance, reliability and
SWaP (Size, Weight, and Power). They are designed for indoor/outdoor all-weather environments and
long lifetime. As the smallest high performance lidar on themarket, the OS1 can be directly integrated
into vehicle fascias, windshields, side mirrors, and headlight clusters. The OS1 family of sensors con-
sist of two models, the OS1-16 and OS1-64, with differing resolution, but of identical mechanical di-
mensions.

→

HIGHLIGHTS
Fixed resolution per frame operating mode
Camera-grade intensity, ambient, and range data
Multi-sensor crosstalk immunity
Simultaneous and co-calibrated 2D and 3D output
Industry leading intrinsic calibration
Example client code available

For the purposes of this document, the term “OS1” refers to the family of sensors, and only where there
is a difference in performance will each model be referred to by its specific model designation.

2 Safety & Legal Notices

The OS1-16 and OS1-64 are Class 1 laser products per IEC 60825-1:2014 and operate in the 850nm
band.

FDA 21CFR1040 Notice: OS1-16 and OS1-64 comply with FDA performance standards for laser prod-
ucts except for deviations pursuant to Laser Notice No. 50, dated July 26th, 2001.

WARNING: The OS1 is a sealed unit, and is not user-serviceable.

3

Your use of the OS1 is subject to the Terms of Sale that you signedwith Ouster or your distributor/inte-
grator. Included in these terms is the prohibition on removing or otherwise opening the sensor housing,
inspecting the internals of the sensor, reverse-engineering any part of the sensor, or permitting any
third party to do any of the foregoing.

“Ouster” and “OS1” are both registered trademarks of Ouster, Inc. They may not be used without
express permission from Ouster, Inc.

If you have any questions about the above points, contact us at legal@ouster.io.

3 Drivers & Interface

By default, when newly provided power by the Interface Box, the sensor will start-up and then au-
tomatically start taking measurements, request an IP address, and stream UDP data packets to the
configured destination address. Settings can be modified using a simple plaintext protocol over TCP.

Ouster provides sample code for connecting to the sensor, visualizing the output data, and in-
terfacing with the popular ROS robotics suite. The source code repository can be found at:
www.github.com/ouster-lidar/ouster_example

3.1 Network Configuration

Before attempting to configure and stream data from the sensor, please ensure that it is reachable
over the network from the client PC. The OS1 requires a network that can provide data throughput of
approximately 129 Mbps between client and the sensor, and a DHCP server to reliably connect and
stream data. Gigabit Ethernet hardware is recommended.

In a typical network environment, the OS1 should obtain a DHCP lease and be reachable over the
network a few moments after being plugged in. If your network is set up to provide DNS for DHCP
clients, you should be able to check for connectivity using e.g.:

$ ping -c1 os1-991900123456
PING os1-991900123456 (10.5.5.94) 56(84) bytes of data.
64 bytes from os1-991900123456 (10.5.5.94): icmp_seq=1 ttl=64 time=0.163 ms

--- os1-991900123456 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.163/0.163/0.163/0.000 ms

where “991900123456” is the serial number printed on the top of the sensor.

Running A Local DHCP Server

If the sensor is plugged directly into the client machine, you will have to install and run a local DHCP
server or use the IPV4 override mechanism described below. A common choice is dnsmasq, which is
available for a variety of platforms.

4

mailto:legal@ouster.io
https://www.ros.org
https://github.com/ouster-lidar/ouster_example

Note: When connecting directly to a client machine, hostnames require a ‘.local’ appended to them.
e.g.: os1-991900123456.local

To connect to the sensor using a local dnsmasq instance on Linux:

1. Identify the Ethernet interface to be used on the client (Linux) machine, e.g., enp6s0f1

2. Check that the sensor is not plugged in to the Ethernet interface on the client machine

3. Make sure that the Ethernet interface is “down” and not yet configured:

$ ip addr flush dev enp6s0f1
$ ip addr show dev enp6s0f1
2: enp6s0f1: <BROADCAST,MULTICAST> ... state DOWN group default qlen 1000

4. Assign a static IP to the chosen interface:

$ sudo ip addr add 10.5.5.1/24 dev enp6s0f1

5. Connect an Ethernet cable between the sensor and the designated Ethernet interface on the
client machine. Power-on the sensor. Ensure that the link is now “up”:

$ sudo ip link set enp6s0f1 up
$ ip addr show dev enp6s0f1
2: enp6s0f1: <BROADCAST,MULTICAST,UP> ... state UP group default qlen 1000
link/ether xx:xx:xx:xx:xx:xx brd ff:ff:ff:ff:ff:ff
inet 10.5.5.1/24 scope global enp6s0f1

valid_lft forever preferred_lft forever

6. Run dnsmasq to listen for DHCP requests on the chosen interface:

$ sudo dnsmasq -C /dev/null -kd -F 10.5.5.50,10.5.5.100 -i enp6s0f1 --bind-dynamic

7. Within 10-15 seconds, you should see the DHCP negotiation take place:

dnsmasq-dhcp: DHCP, IP range 10.5.5.50 -- 10.5.5.100, lease time 1h
dnsmasq-dhcp: DHCP, sockets bound exclusively to interface enp6s0f1
dnsmasq: reading /etc/resolv.conf
dnsmasq: using nameserver 127.0.1.1#53
dnsmasq: read /etc/hosts - 7 addresses
dnsmasq-dhcp: DHCPDISCOVER(enp6s0f1) xx:xx:xx:xx:xx:xx
dnsmasq-dhcp: DHCPOFFER(enp6s0f1) 10.5.5.94 xx:xx:xx:xx:xx:xx
dnsmasq-dhcp: DHCPREQUEST(enp6s0f1) 10.5.5.94 xx:xx:xx:xx:xx:xx
dnsmasq-dhcp: DHCPACK(enp6s0f1) 10.5.5.94 xx:xx:xx:xx:xx:xx os1-991900123456

8. Check connectivity via the assigned IP address:

$ ping -c1 10.5.5.94
PING 10.5.5.94 (10.5.5.94) 56(84) bytes of data.
64 bytes from 10.5.5.94: icmp_seq=1 ttl=64 time=0.404 ms

--- 10.5.5.94 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.404/0.404/0.404/0.000 ms

5

9. Alternatively check connectivity via the local hostname:

$ ping -c1 os1-991900123456.local
PING os1-991900123456.local (10.5.5.94) 56(84) bytes of data.
64 bytes from os1-991900123456.local (10.5.5.94): icmp_seq=1 ttl=64 time=0.404 ms

--- os1-991900123456.local ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.404/0.404/0.404/0.000 ms

10. See the documentation for your operating system on how tomake these changes persistent, e.g.,
by using a network configuration daemon like NetworkManager.

3.2 HTTP Interface

The lidar sensor hosts an HTTP server that implements a versioned RESTful API to enable program-
matic command and control of the sensor.

This HTTP interface is a convenient way to query the sensor for various information. The query can
be done from the command line, programmatically, or from within a web browser.

All of the responses are JSON objects and best handled with an HTTP client that can interpret and
present JSON objects.

→

Note: See the HTTP API Reference for more information on usage of individual resources.

Clients and Tools

Many readily available tools exist to facilitate communication with the HTTP API.

Web browser

Command line

Programmatic access

Web browser

The simplest way to access the API is to issue a GET request using the web browser.

For example, to view the network configuration of a sensor load the following URL in a web browser:

6

https://restfulapi.net/
https://www.json.org/

http://os1-991900123456/api/v1/system/network

Note: When connecting a sensor directly to a client machine, hostnames require a ‘.local’ appended
to them. e.g.: http://os1-991900123456.local/api/v1/system/network

Extensions aid in viewing the JSON objects. Firefox includes a JSON formatter by default and the
Chrome web store offers the JSON Formatter.

REST clients are also available to send HTTP requests using things other than the GET method. The
Chrome web store offers the Advanced REST client.

Command line

For automated access from the command line a few tools exist for HTTP clients as well as JSON for-
matters.

The httpie tool serves as an HTTP client as well as JSON formatter. Example usage:

$ http http://os1-991900123456/api/v1/system/network
HTTP/1.1 200 OK
content-length: 260
content-type: application/json; charset=UTF-8

{
"carrier": true,
"duplex": "full",
"ethaddr": "bc:0f:a7:00:01:2c",
"hostname": "os1-991900123456",
"ipv4": {

"addr": "192.0.2.123/24",
"link_local": "169.254.245.183/16",
"override": null

},
"ipv6": {

"link_local": "fe80::be0f:a7ff:fe00:12c/64"
},
"speed": 1000

}

Curl is a popular and high performance command line tool (backed by libcurl), example usage is as
follows:

$ curl -s http://os1-991900123456/api/v1/system/network
{"ipv6": {"link_local": "fe80::be0f:a7ff:fe00:12c/64"}, "ethaddr": "bc:0f:a7:00:01:2c", "ipv4": {"override
↪→": null, "link_local": "169.254.245.183/16", "addr": "192.0.2.123/24"}, "speed": 1000, "duplex": "full",
↪→"carrier": true, "hostname": "os1-991900123456"}

The unformatted JSON output is hard to read, but this can be improved with the command line jq
formatter:

7

http://os1-991900123456/api/v1/system/network
http://os1-991900123456.local/api/v1/system/network
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://httpie.org
https://curl.haxx.se/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

$ curl -s http://os1-991900123456/api/v1/system/network | jq -S
{

"carrier": true,
"duplex": "full",
"ethaddr": "bc:0f:a7:00:01:2c",
"hostname": "os1-991900123456",
"ipv4": {

"addr": "192.0.2.123/24",
"link_local": "169.254.245.183/16",
"override": null

},
"ipv6": {

"link_local": "fe80::be0f:a7ff:fe00:12c/64"
},
"speed": 1000

}

Programmatic access

Several popular libraries are available for interfacing with the sensor via common programming lan-
guages:

C - libcurl

Python - requests

Response Codes

The HTTP API uses HTTP response codes to provide result status information. The sensor will return
HTTP response codes that comply with the HTTP standards.

The http command shows the response code as part of the returned response in the console.

Common response code classes:

→

2XX Request was success (e.g., when a GET command succeeded)

4XX Client request error not allowed (e.g., when a POST on system/time is attempted)

5XX Server errors

8

https://curl.haxx.se/libcurl/
http://docs.python-requests.org
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

3.3 TCP API Command Set

Querying Sensor Info and Intrinsic Calibration

The sensor can be queried and configured using a simple plaintext protocol over TCP on port 7501.

An example session using the unix netcat utility is shown below:

$ nc os1-991900123456 7501
get_sensor_info
{"status": "RUNNING", "image_rev": "ousteros-image-prod-aries-v1.13.0-20190828230129",
"base_pn": "000-101323-03", "prod_sn": "991900123456", "proto_rev": "v1.1.1",
"base_sn": "101837000752", "prod_line": "OS-1-64", "build_rev": "v1.13.0",
"prod_pn": "840-101855-02", "build_date": "2019-08-28T22:58:18Z"}

A sensor may have one of the following statuses:

Status Description

INITIALIZING When the sensor is booting and not yet outputting data.

UPDATING When the sensor is updating the FPGA firmware on the first reboot after a firmware
upgrade.

RUNNING When the sensor has reached the final running state where it can output data.

ERROR Check error codes in the errors field for more information.

UNCONFIGURED An error with factory calibration that requires a return.

If sensor is in an ERROR or UNCONFIGURED state, please contact Ouster support with the two diagnostic
files found at http://os1-9919xxxxxxxx/diag for support.

The following commands will return sensor configuration and calibration information:

9

mailto:support@ouster.io?subject=Help%20with%20OS1&body=Hello,%0D%0A%0D%0AI'm%20having%20trouble%20with%20my%20OS1.%20I%20have%20attached%20the%20two%20diagnostic%20files%20and%20relevant%20photos%20of%20my%20setup%20here.
http://os1-9919xxxxxxxx/diag

Table1: Sensor Configuration and Calibration
Command Description Response Example
get_config_txt Returns JSON-formatted

sensor configuration. {
"timestamp_mode": "TIME_FROM_INTERNAL_OSC",
"multipurpose_io_mode": "OFF",
"nmea_leap_seconds": 0,
"lidar_mode": "1024x10",
"sync_pulse_in_polarity": "ACTIVE_HIGH",
"nmea_in_polarity": "ACTIVE_HIGH",
"sync_pulse_out_polarity": "ACTIVE_HIGH",
"udp_ip": "192.0.2.123",
"nmea_ignore_valid_char": 0,
"auto_start_flag": 1,
"sync_pulse_out_pulse_width": 10,
"nmea_baud_rate": "BAUD_9600",
"sync_pulse_out_angle": 360,
"sync_pulse_out_frequency": 1,
"udp_port_imu": 7503,
"udp_port_lidar": 7502,
"azimuth_window": [0, 36000]

}

get_sensor_info Returns JSON-formatted
sensor metadata: serial
number, hardware and soft-
ware revision, and sensor
status.

{
"status": "RUNNING",
"image_rev": "ousteros-image-prod-aries-v1.

↪→13.0-20190828230129",
"base_pn": "000-101323-03",
"prod_sn": "991900123456",
"proto_rev": "v1.1.1",
"base_sn": "101837000752",
"prod_line": "OS-1-64",
"build_rev": "v1.13.0",
"prod_pn": "840-101855-02",
"build_date": "2019-08-28T22:58:18Z"

}

Continued on next page

10

Table 1 – continued from previous page
Command Description Response Example
get_time_info Returns JSON-formatted

sensor timing configu-
ration and status of udp
timestamp, sync_pulse_in, and
multipurpose_io.

{
"timestamp": {

"time": 302.96139565999999,
"mode": "TIME_FROM_INTERNAL_OSC",
"time_options": {

"sync_pulse_in": 0,
"internal_osc": 302,
"ptp_1588": 309

}
},
"sync_pulse_in": {

"locked": 0,
"diagnostics": {

"last_period_nsec": 0,
"count_unfiltered": 1,
"count": 0

},
"polarity": "ACTIVE_HIGH"

},
"multipurpose_io": {

"mode": "OFF",
"sync_pulse_out": {

"pulse_width_ms": 10,
"angle_deg": 360,
"frequency_hz": 1,
"polarity": "ACTIVE_HIGH"

},
"nmea": {

"locked": 0,
"baud_rate": "BAUD_9600",
"diagnostics": {

"io_checks": {
"bit_count": 1,
"bit_count_unfilterd": 0,
"start_char_count": 0,
"char_count": 0

},
"decoding": {

"last_read_message": "",
"date_decoded_count": 0,
"not_valid_count": 0,
"utc_decoded_count": 0

}
},
"leap_seconds": 0,
"ignore_valid_char": 0,
"polarity": "ACTIVE_HIGH"

}
}

}

Continued on next page

11

Table 1 – continued from previous page
Command Description Response Example
get_beam_intrinsics Returns JSON-formatted

beam altitude and azimuth
offsets, in degrees.

{
"beam_altitude_angles": [

16.926,
16.313,
"...",
-16.078,
-16.689

],
"beam_azimuth_angles": [

3.052,
0.857,
"...",
-0.868,
-3.051

]
}

get_imu_intrinsics Returns JSON-formatted
IMU transformation matrix
needed to adjust to the
Sensor Coordinate Frame.

{
"imu_to_sensor_transform": [

1,
0,
0,
6.253,
0,
1,
0,
-11.775,
0,
0,
1,
7.645,
0,
0,
0,
1

]
}

Continued on next page

12

Table 1 – continued from previous page
Command Description Response Example
get_lidar_intrinsics Returns JSON-formatted

lidar transformation matrix
needed to adjust to the
Sensor Coordinate Frame.

{
"lidar_to_sensor_transform": [

-1,
0,
0,
0,
0,
-1,
0,
0,
0,
0,
1,
36.18,
0,
0,
0,
1

]
}

Continued on next page

13

Table 1 – continued from previous page
Command Description Response Example
get_alerts
<START_CURSOR>

Returns JSON-formatted
sensor diagnostic informa-
tion.
The log list contains Alerts
when they were activated or
deactivated. An optional
START_CURSOR argument spec-
ifies where the log should
start.
The active list contains all
currently active alerts.

{
"next_cursor": 2,
"active": [

{
"category": "UDP_TRANSMISSION",
"msg": "Received an unknown error�

↪→when trying to send lidar data UDP packet;�
↪→closing socket.",

"realtime": "1569631015375767040",
"cursor": 0,
"id": "0x01000017",
"active": true,
"msg_verbose": "192.0.2.123:7502",
"level": "WARNING"

},
],
"log": [

{
"category": "UDP_TRANSMISSION",
"msg": "Received an unknown error�

↪→when trying to send lidar data UDP packet;�
↪→closing socket.",

"realtime": "1569631015375767040",
"cursor": 0,
"id": "0x01000017",
"active": true,
"msg_verbose": "192.0.2.123:7502",
"level": "WARNING"

},
{

"category": "UDP_TRANSMISSION",
"msg": "Received an unknown error�

↪→when trying to send IMU UDP packet; closing�
↪→socket.",

"realtime": "1569631015883802368",
"cursor": 1,
"id": "0x0100001a",
"active": false,
"msg_verbose": "192.0.2.123:7503",
"level": "WARNING"

}
]

}

Querying Active or Staged Parameters

Sensor configurations / operating modes can also be queried over TCP. Below is the latest command
format:

get_config_param active <parameter> will return the current active configuration parameter values.

14

get_config_param staged <parameter> will return the parameter values that will take place after issuing
a reinitialize command or after sensor reset.

An example session using the unix netcat utility is shown below:

$ nc os1-991900123456 7501
get_config_param active lidar_mode
1024x10

The following commands will return sensor active or staged configuration parameters:

Table2: Sensor Configurations
get_config_param Command Description Response
udp_ip Returns the ip address to which

the sensor sends UDP traffic.
"" (default)

udp_port_lidar Returns the port number of lidar
UDP data packets.

7502 (default)

udp_port_imu Returns the port number of IMU
UDP data packets.

7503 (default)

lidar_mode Returns a string indicating the
horizontal resolution and rota-
tion frequency [Hz].

One of 512x10, 1024x10, 2048x10, 512x20,
or 1024x20

timestamp_mode Returns the method used to
timestamp measurements. See
Section 5.2 for a detailed de-
scription of each option.

One of TIME_FROM_INTERNAL_OSC,
TIME_FROM_PTP_1588,
TIME_FROM_SYNC_PULSE_IN

nmea_in_polarity Returns the polarity of NMEA
UART input $GPRMC messages.
See Section 5.2 NMEA use case.
Use ACTIVE_HIGH if UART is active
high, idle low, and start bit is af-
ter a falling edge.

One of ACTIVE_HIGH (default) or
ACTIVE_LOW

nmea_ignore_valid_char Returns 0 if NMEA UART input
$GPRMCmessages should be ig-
nored if valid character is not
set, and 1 if messages should be
used for time syncing regardless
of the valid character.

0 (default) or 1

nmea_baud_rate Returns BAUD_9600 (default) or
BAUD_115200 for the expected
baud rate the sensor is attempt-
ing to decode for NMEA UART
input $GPRMC messages.

One of BAUD_9600, BAUD_115200

nmea_leap_seconds Returns the number of leap
seconds that will be added to
the UDP timestamp when calcu-
lating seconds since 00:00:00
Thursday, 1 January 1970. For
Unix Epoch time, this should be
set to 0.

0 (default)

15

Table3: Sensor Modes
Command Command Description Response
multipurpose_io_mode Returns the configured mode of the

MULTIPURPOSE_IO pin. See Sec-
tion 5.3 for a detailed description of
each option.

One of OFF (de-
fault), INPUT_NMEA_UART,
OUTPUT_FROM_INTERNAL_OSC,
OUTPUT_FROM_SYNC_PULSE_IN,
OUTPUT_FROM_PTP_1588, or
OUTPUT_FROM_ENCODER_ANGLE

sync_pulse_out_polarity Returns the polarity of
SYNC_PULSE_OUT output, if
sensor is using this for time syn-
chronization.

One of ACTIVE_HIGH or
ACTIVE_LOW (default)

sync_pulse_out_frequency Returns the output
SYNC_PULSE_OUT pulse rate
in Hz.

1 (default)

sync_pulse_out_angle Returns the output
SYNC_PULSE_OUT pulse rate
defined in rotation angles.

360 (default)

sync_pulse_out_pulse_width Returns the output
SYNC_PULSE_OUT pulse width
in ms.

10 (ms, default)

auto_start_flag Returns 1 if sensor is on auto start,
and 0 if not. Normal operation is to
use auto start. If not in auto start,
the sensor must be manually com-
manded in order to operate.

1 (default)

16

Setting Configuration Parameters

set_config_param <parameter> <value>will set new values for configuration parameters, which will take
effect after issuing reinitialize command, or after sensor reset.

reinitialize will reinitialize the sensor so the staged values of the parameters will take effect imme-
diately.

write_config_txt will write new values of active parameters into a configuration file, so they will per-
sist after sensor reset. In order to permanently change a parameter in the configuration file, first use
set_config_param to update the parameter in a staging area, then use reinitialize to make that pa-
rameter active. Only after the parameter is made active will write_config_txt capture it to take effect
on reset.

set_udp_dest_auto will automatically determine the sender’s IP address at the time the command was
sent, and set it as the destination of UDP traffic. This takes effect after issuing a reinitialize com-
mand. Using this command has the same effect as using set_config_param udp_ip <ip address>.

An example session using the unix netcat utility is shown below:

$ nc os1-991900123456 7501
set_config_param lidar_mode 512x20
set_config_param
set_udp_dest_auto
set_udp_dest_auto
reinitialize
reinitialize
write_config_txt
write_config_txt

The following commands will set sensor configuration parameters:

Table4: Setting Config Params
set_config_param Command Description Response
udp_ip <ip address> Set the <ip address> to which the sen-

sor sends UDP traffic. On boot, the
sensor will not output data until this is
set. If the IP address is not known,
this can also be accomplished with
the set_udp_dest_auto command (details
above). The sensor supports unicast,
IPv4 broadcast (255.255.255.255), and
IPv6 multicast (ff02::01) addresses.

set_config_param on suc-
cess, error: otherwise

udp_port_lidar <port> Set the <port> on udp_ip to which lidar
data will be sent (7502, default).

set_config_param on suc-
cess, error: otherwise

udp_port_imu <port> Set the <port> on udp_ip to which IMU
data will be sent (7503, default).

set_config_param on suc-
cess, error: otherwise
Continued on next page

17

Table 4 – continued from previous page
set_config_param Command Description Response
lidar_mode <mode> Set the horizontal resolution and rota-

tion rate of the sensor. Valid modes are
512x10, 1024x10, 2048x10 512x20, 1024x20.
Each 50% the total number of points
gathered is reduced (e.g., from 2048x10
to 1024x10) extends range by 15-20%.

set_config_param on suc-
cess, error: otherwise

timestamp_mode <mode> Set the method used to times-
tamp measurements. Valid
modes are TIME_FROM_INTERNAL_OSC,
TIME_FROM_SYNC_PULSE_IN, or
TIME_FROM_PTP_1588.

set_config_param on suc-
cess, error: otherwise

sync_pulse_in_polarity
<1/0>

Set the polarity of SYNC_PULSE_IN
input, which controls polar-
ity of SYNC_PULSE_IN pin
when timestamp_mode is set in
TIME_FROM_SYNC_PULSE_IN.

set_config_param on suc-
cess, error: otherwise

nmea_in_polarity <1/0> Set the polarity of NMEA UART input
$GPRMC messages. See Section 5.2
NMEA use case. Use ACTIVE_HIGH if UART
is active high, idle low, and start bit is af-
ter a falling edge.

set_config_param on suc-
cess, error: otherwise

nmea_ignore_valid_char
<1/0>

Set 0 if NMEA UART input $GPRMC mes-
sages should be ignored if valid charac-
ter is not set, and 1 if messages should be
used for time syncing regardless of the
valid character.

set_config_param on suc-
cess, error: otherwise

nmea_baud_rate <rate in
baud/s>

Set BAUD_9600 (default) or BAUD_115200 for
the expected baud rate the sensor is at-
tempting to decode for NMEA UART in-
put $GPRMC messages.

set_config_param on suc-
cess, error: otherwise

nmea_leap_seconds <s> Set an integer number of leap seconds
that will be added to the UDP times-
tamp when calculating seconds since
00:00:00 Thursday, 1 January 1970. For
Unix Epoch time, this should be set to 0.

set_config_param on suc-
cess, error: otherwise

multipurpose_io_mode
<mode>

Configure the mode of the
MULTIPURPOSE_IO pin. Valid
modes are OFF, INPUT_NMEA_UART,
OUTPUT_FROM_INTERNAL_OSC,
OUTPUT_FROM_SYNC_PULSE_IN,
OUTPUT_FROM_PTP_1588, or
OUTPUT_FROM_ENCODER_ANGLE.

set_config_param on suc-
cess, error: otherwise

18

Table5: Setting Sync
set_config_param Command Description Response
sync_pulse_out_polarity <1/0> Set the polarity of

SYNC_PULSE_OUT output,
if sensor is set as the master
sensor used for time synchro-
nization.

set_config_param on success,
error: otherwise

sync_pulse_out_frequency <rate
in Hz>

Set output SYNC_PULSE_OUT
rate. Valid inputs are integers >
0 Hz, but also limited by the cri-
teria described in Section 5.3 of
this user manual.

set_config_param on success,
error: otherwise

sync_pulse_out_angle <angle in
deg>

Set output SYNC_PULSE_OUT
rate defined by rotation angle.
Valid inputs are integers up to
360 degrees but also limited by
the criteria described in Sec-
tion 5.3 of this user manual.

set_config_param on success,
error: otherwise

sync_pulse_out_pulse_width
<width in ms>

Set output SYNC_PULSE_OUT
pulse width in ms, in 1 ms in-
crements. Valid inputs are inte-
gers greater than 0ms, but also
limited by the criteria described
in Section 5.3 of this user man-
ual.

set_config_param on success,
error: otherwise

Table6: Reinitialize, Write Configuration, & Auto Destination UDP
Command Command Description Response
reinitialize Restarts the sensor. Changes to lidar,

multipurpose_io, and timestamp modes
will only take effect after reinitialization.

reinitialize on success

write_config_txt Make the current settings persist after
reboot.

write_config_txt on suc-
cess

set_udp_dest_auto Set the destination of UDP traffic to the
IP address that issued the command.

set_udp_dest_auto on
success

19

3.4 Lidar Data Format

By default UDP data is forwarded to Port 7502. Lidar data packets consist of 16 azimuth blocks and
are always 12608 Bytes in length. The packet rate is dependent on the output mode. Words are 32
bits in length and little endian.

Word Azimuth Block 0 Azimuth Block 1 … Azimuth Block 15
(Word 0,1) Timestamp Timestamp … Timestamp
(Word 2[0:15]) Measurement ID Measurement ID … Measurement ID
(Word 2[16:31]) Frame ID Frame ID … Frame ID
(Word 3) Encoder Count Encoder Count … Encoder Count
(Word 4,5,6) Channel 0 Data Block Channel 0 Data Block … Channel 0 Data Block
(Word 7,8,9) Channel 1 Data Block Channel 1 Data Block … Channel 1 Data Block

. . .
(Word 193, 194,
195)

Channel 63 Data Block Channel 63 Data Block … Channel 63 Data Block

(Word 196) Azimuth Data Block
Status

Azimuth Data Block
Status

… Azimuth Data Block
Status

Each azimuth block contains:

Timestamp [64 bit unsigned int] - timestamp of the measurement in nanoseconds

Measurement ID [16 bit unsigned int] - a sequentially incrementing azimuthmeasurement count-
ing up from 0 to 511, or 0 to 1023, or 0 to 2047 depending on lidar_mode.

Frame ID [16 bit unsigned int] - index of the lidar scan. Increments every time the sensor com-
pletes a rotation, crossing the zero point of the encoder.

Encoder Count [32 bit unsigned int] - an azimuth angle as a raw encoder count, starting from 0
with a max value of 90111 - incrementing 44 ticks every azimuth angle in 2048 mode, 88 ticks in
1024 mode, and 176 ticks in 512 mode.

Data Block [96 bits] - 3 data words for each of the 16 or 64 pixels. See Table below for full
definition.

Range [32 bit unsigned int - only 20 bits used] - range in millimeters, discretized to the
nearest 3 millimeters.

Signal Photons [16 bit unsigned int] - signal intensity photons in the signal return measure-
ment are reported.

Reflectivity [16 bit unsigned int] - sensor signal_photonmeasurements are scaled based on
measured range and sensor sensitivity at that range, providing an indication of target re-
flectivity. Calibration of this measurement has not currently been rigorously implemented,
but this will be updated in a future firmware release.

Ambient Noise Photons [16 bit unsigned int] - ambient noise photons in the ambient noise
return measurement are reported.

Azimuth Data Block Status [32 bits]- indicates whether the azimuth block contains valid data in
its channels’ Data Blocks. Good = 0xFFFFFFFF, Bad = 0x0. If the Azimuth Data Block Status is
bad (e.g. in the case of column data being dropped), words in the data block will be set to 0x0,
but Timestamp, Measurement ID, Frame ID, and Encoder Count will remain valid.

20

Full Description of Data Block:

Table7: Data Block
Word Byte 3 Byte 2 Byte 1 Byte 0
(Word 0) unused[31:24] unused[23:20]

range_mm[19:16]
range_mm[15:8] range_mm[7:0]

(Word 1) signal_photons[31:24] signal_photons[23:16] reflectivity[15:8] reflectivity[7:0]
(Word 2) unused[31:24] unused[23:16] noise_photons[15:8] noise_photons[7:0]

3.5 IMU Data Format

IMU UDP Packets are 48 Bytes long and are sent to Port 7503 at 100 Hz. Values are little endian.

Word IMU and Gyro Data Block
(Word 0,1) 64-bit unsigned integer for IMU diagnostic time (ns, monotonic system time since

boot)
(Word 2,3) 64-bit unsigned integer for accelerometer read time (ns, relative to timestamp_mode)
(Word
4,5)

64-bit unsigned integer for gyroscope read time (ns, relative to timestamp_mode)

(Word 6) 32-bit float for acceleration in x-axis (g)
(Word 7) 32-bit float for acceleration in y-axis (g)
(Word 8) 32-bit float for acceleration in z-axis (g)
(Word 9) 32-bit float for angular velocity about in x-axis (deg per sec)
(Word 10) 32-bit float for angular velocity about in y-axis (deg per sec)
(Word 11) 32-bit float for angular velocity about in z-axis (deg per sec)

Note that the first timestamp (Word 0,1) is for diagnostics only and is rarely used under normal oper-
ation.

The second two timestamps, (Word 2,3) and (Word 4,5), are sampled on the same clock as the lidar
data, so should be used for most applications.

Ouster provides timestamps for both the gyro and accelerometer in order to give access to the lowest
level information. In most applications it is acceptable to use the average of the two timestamps.

3.6 Data Rates

Considering the lidar packets which account for 99.6% of data coming from the sensor (IMU packets
constitute the remaining 0.4%): Based on 12,608 Bytes/packet and 1280 packets/sec, in 2048x10 or
1024x20 mode the OS1 outputs 16.138 MB/s (129 Mbps). For this reason a gigabit Ethernet network is
required for reliable performance.

21

4 Coordinate Frames

4.1 Sensor Coordinate Frame

The Sensor Coordinate Frame follows the right-hand rule convention and is defined at the center of
the sensor housing on the bottom, with the x-axis pointed forward, y-axis pointed to the left and z-axis
pointed towards the top of the sensor. The external connector is located in the negative x direction.
The Sensor Coordinate Frame is marked in the diagram below with XS, YS, ZS.

The Lidar Coordinate Frame follows the right-hand rule convention and is defined at the intersection
of the lidar axis of rotation and the lidar optical midplane (a plane parallel to Sensor Coordinate Frame
XY plane and coincident with the 0 degree elevation beam angle of the lidar). The Lidar Coordinate
Frame axes are arranged with the x-axis pointed at encoder angle 0, the y-axis pointed to the right
and the z-axis pointed towards the top of the sensor. The external connector is located in the positive
x direction. The Lidar Coordinate Frame is marked in the diagram below with XL, YL, ZL.

The Lidar Coordinate Frame’s positive x-axis (0 encoder value) is opposite the Sensor Coordinate
Frame’s positive x-axis to center lidar data about the Sensor Coordinate Frame’s positive x-axis. A
single measurement frame starts at the Lidar Coordinate Frame’s 0 degree position and ends at the
360 degree position. This is convenient when viewing a “range image” of the Ouster Sensor measure-

22

ments, allowing the “range image” to be centered in the Sensor Coordinate Frame’s positive x-axis,
which is generally forward facing in most robotic systems.

The Ouster Sensor scans in the clockwise direction when viewed from the top, which is a negative
rotational velocity about the z-axis. Thus, as encoder ticks increases from 0 to 90111, the actual angle
about the z-axis in the Lidar Coordinate Frame will decrease.

4.2 Lidar Intrinsic Beam Angles

The intrinsic beam angles for each beammay be queried with a TCP command (see OS1 Software User
Guide) and provide an azimuth and elevation adjustment to the each beam. The azimuth adjustment
is referenced off of the current encoder angle and the elevation adjustment is referenced from the XY
plane in the Sensor and lidar Coordinate Frames.

4.3 Lidar Range Data To XYZ Lidar Coordinate Frame

The origin and axes of the Lidar Coordinate Frame are defined by the position of the lidar lens aperture
stop in the sensor and the 0º position of the rotary encoder, which is alignedwith the sensor connector
and the negative X axis of the Sensor Coordinate Frame.

For many applications, it is sufficient to calculate the XYZ point cloud in the Lidar Coordinate Frame
using a combination of the intrinsic beam angles and the encoder reading. The intrinsic azimuth and
elevation beam angles may be queried over TCP as two vectors each 64 elements long.

Lidar data may be transformed into 3D cartesian x, y, z coordinates in the Lidar Coordinate Frame.
Given:

encoder_count of the azimuth block

range from the data block of the i-th channel

beam_altitude_angles and

beam_azimuth_angles from get_beam_intrinsics in the TCP interface described in Section
3.3

the corresponding 3D point can be computed using:

r = rangemm

θ = 2π

(
encoder_count

90112
+

beam_azimuth_angles[i]
360

)
ϕ = 2π

beam_altitude_angles[i]
360

x = r cos(θ) cos(ϕ)
y = −r sin(θ) cos(ϕ)
z = r sin(ϕ)

23

4.4 Lidar Range Data To Sensor XYZ Coordinate Frame

For applications that require calibration against a precision mount or use the IMU data in combination
with the lidar data, the xyz points should be adjusted to the Sensor Coordinate Frame. This requires a z
translation and a rotation of the x,y,z points about the z axis. The z translation is the height of the lidar
aperture stop above the sensor origin, which is 36.180 mm, and the data must be rotated 180 degrees
around the z axis. This information can be queried over TCP in the form of an intrinsic transformation
matrix:

M_lidar_to_sensor = [[X, X, X, X], [X, X, X, X], [X, X, X, X], [0, 0, 0, 1]]

Example JSON formatted query using the TCP command get_lidar_intrinsics:

{
"lidar_to_sensor_transform": [

-1,
0,
0,
0,
0,
-1,
0,
0,
0,
0,
1,
36.18,
0,
0,
0,
1
]

}

4.5 IMU Data To Sensor XYZ Coordinate Frame

The IMU is slightly offset in the Sensor Coordinate Frame for practical reasons. The IMU origin in the
Sensor Coordinate Frame can be queried over TCP in the form of an intrinsic transformation matrix:

M_imu_to_sensor = [[X, X, X, X], [X, X, X, X], [X, X, X, X], [0, 0, 0, 1]]

Example JSON formatted query using the TCP command get_imu_intrinsics:

{
"imu_to_sensor_transform": [

1,
0,
0,
6.253,
0,
1,

(continues on next page)

24

(continued from previous page)

0,
-11.775,
0,
0,
1,
7.645,
0,
0,
0,
1
]

}

5 Time Synchronization

5.1 Timing Overview Diagram

Signal path with MULTIPURPOSE_IO set as input

25

Signal path with MULTIPURPOSE_IO set as output

5.2 Sensor Time Source

All lidar and IMU data are timestamped to a common timer with 10 nanosecond precision.

The common timer can be programmed to run off one of three clock sources:

An internal clock derived from a high accuracy, low drift oscillator.

An opto-isolated digital input from the external connector for timing off an external hard-
ware trigger such as a GPS. The polarity of this input signal is programmable. For instance,
both aGPSPPS pulse and a 30Hz frame sync froman industrial camera can supply a timing
signal to the OS1.

Using the IEEE 1588 Precision Time Protocol. PTP provides the convenience of configuring
timing over a network that supports IEEE 1588 with no additional hardware signals.

Setting Ouster Sensor Time Source

The source for measurement timestamps can be configured using the set_timestamp_mode TCP com-
mand (see Section 3.3). The available modes are described below:

26

Table8: Timestamp Modes
Command Response
TIME_FROM_INTERNAL_OSC Use the internal clock. Measurements are time stamped with ns

since power-on. Free running counter based on the OS1’s internal
oscillator. Counts seconds and nanoseconds since OS1 turn on,
reported at ns resolution (both a second and nanosecond register
in every UDP packet), but min increment is on the order of 10 ns.
Accuracy is +/- 90 ppm.

TIME_FROM_SYNC_PULSE_IN A free running counter synced to the SYNC_PULSE_IN input
counts seconds (# of pulses) and nanoseconds since OS1 turn on.
If multipurpose_io_mode is set to INPUT_NMEA_UART then the seconds
register jumps to time extracted from a NMEA $GPRMC message
read on the multipurpose_io port. Reported at ns resolution (both
a second and nanosecond register in every UDP packet), but min
increment is on the order of 10 ns. Accuracy is +/- 1 �s from a
perfect SYNC_PULSE_IN source.

TIME_FROM_PTP_1588 Synchronize with an external PTP master. A monotonically in-
creasing counter that will begin counting seconds and nanosec-
onds since startup. As soon as a 1588 sync event happens, the
time will be updated to seconds and nanoseconds since 1970. The
counter must always count forward in time. If another 1588 sync
event happens the counter will either jump forward to match the
new time, or slow itself down. It is reported at ns resolution (there
is both a second and nanosecond register in every UDP packet),
but the minimum increment varies. Accuracy is +/- <50 us from
the 1588 master.

If configuring the sensor to synchronize time from an external sync pulse, the pulse polarity can be
specified as described in Section 3.3. Pulse-in frequency is assumed to be 1Hz. For example, the below
commands will set the sensor to expect an active low pulse and configure the seconds timetamp to
be pulse count since sensor startup:

set_config_param timestamp_mode TIME_FROM_SYNC_PULSE_IN

set_config_param sync_pulse_in_polarity ACTIVE_LOW

reinitialize

If desired to configure the multipurpose-io port of the sensor to accept an external NMEA UART mes-
sage, the multipurpose_io_mode parameter must be set to INPUT_NMEA_UART as described in Section 5.3.
Once a valid UART message is recieved by the sensor, the seconds timetamp will snap to the latest
timestamp recieved. The expected NMEA UART message is configurable as described in Section 3.3.
For example, the below commands will set the sensor to accept an NMEA UARTmessage that is active
high with a baud rate of 115200 bits per second, add 27 additional leap seconds, and accept messages
even with a valid character not set:

set_config_param multipurpose_io_mode INPUT_NMEA_UART

set_config_param nmea_in_polarity ACTIVE_HIGH

set_config_param nmea_baud_rate BAUD_115200

set_config_param nmea_leap_seconds 27

27

set_config_param nmea_ignore_valid_char 1

reinitialize

5.3 External Trigger Clock Source

Additionally, theOS1 canbe configured to output a SYNC_PULSE_OUTsignal froma variety of sources.
See example commands in Section 3.3. Pulses will always be evenly spaced.

This can be enabled through the multipurpose_io_mode configuration parameter.

Configuration Response

OFF
Do not output a SYNC_PULSE_OUT signal.

INPUT_NMEA_UART
Reconfigures the MULTIPURPOSE_IO port as an input.
See Section 5.2 for more information.

OUTPUT_FROM_INTERNAL_OSC
Output a SYNC_PULSE_OUT signal synchronized with
the internal clock.

OUTPUT_FROM_SYNC_PULSE_IN
Output a SYNC_PULSE_OUT signal synchronized with
a SYNC_PULSE_IN provided to the unit.

OUTPUT_FROM_PTP_1588
Output a SYNC_PULSE_OUT signal synchronized with
an external PTP IEEE 1588 master.

OUTPUT_FROM_ENCODER_ANGLE
Output a SYNC_PULSE_OUT signal with a user defined
rate in an integer number of degrees.

When the sensor’s multipurpose_io_mode is set to OUTPUT_FROM_INTERNAL_OSC, OUTPUT_FROM_SYNC_PULSE_IN,
or OUTPUT_FROM_PTP_1588, then sync_pulse_out_frequency (Hz) parameter can be used to define the out-
put rate. It defaults to 1 Hz. It should be greater than 0 Hz and maximum sync_pulse_out_frequency is
limited by the criterion below.

When the sensor is set to OUTPUT_FROM_ENCODER_ANGLE, then the sync_pulse_out_angle (deg) parameter
can be used to define the output pulse rate. This allows the user to output a SYNC_PULSE_OUT sig-
nal when the encoder passes a specified angle, or multiple of the angle, indexed from 0 crossing,
in degrees. It should be an integer between 0 and 360 degrees, inclusive. However, the minimum
sync_pulse_out_angle is also limited by the criterion below.

In all modes, the output pulse width is defined by sync_pulse_out_pulse_width (ms).

Note: If sync_pulse_out_pulse_width x sync_pulse_out_frequency is close to 1 second, the output pulses
will not function (will not return to 0). For example, at 10 Hz rotation and a 10 ms pulse width, the
limitation on the number of pulses per rotation is 9.

EXAMPLECOMMANDS: Here are example commands and their effect on output pulsewhen lidar_mode
is 1024x10, and assuming sync_pulse_out_pulse_width is 10 ms.

→

28

Command Response

set_config_param multipurpose_io_mode
OUTPUT_FROM_SYNC_PULSE_IN set_config_param
sync_pulse_out_pulse_width 10 set_config_param
sync_pulse_out_frequency 1 reinitialize

The output pulse frequency is 1 Hz. Each pulse
is 10 ms wide. sync_pulse_out_pulse_width and
sync_pulse_out_frequency commands are optional be-
cause they just re-command the default values

set_config_param multipurpose_io_mode
OUTPUT_FROM_SYNC_PULSE_IN set_config_param
sync_pulse_out_frequency 50 reinitialize

The output pulse frequency is 50 Hz. Each pulse is 10 ms
wide.

set_config_param multipurpose_io_mode
OUTPUT_FROM_ENCODER_ANGLE set_config_param
sync_pulse_out_angle 360 reinitialize

The output pulse frequency is 10 Hz, since the sensor is
in 10 Hz mode (10 rotations per second) and the angle is
set to 360 degrees, a full rotation. Each pulse is 10 ms
wide.

set_config_param multipurpose_io_mode
OUTPUT_FROM_ENCODER_ANGLE set_config_param
sync_pulse_out_angle 45 reinitialize

The output pulse frequency is 80 Hz, since the sensor is
in 10 Hz mode (10 rotations per second) and the angle is
set to 45 degrees. Each full rotation will have 8 pulses.
Each pulse is 10 ms wide.

5.4 NMEA Message Format

The Ouster Sensor expects a standard NMEA $GPRMC UART message. Data (called a sentence) is a
simple ASCII string starting with a ‘$’ character and ending with a return character. Fields of the sen-
tence are separated with a ‘,’ character, and the last field (a checksum) is separated by a ‘*’ character.

The max character length of a standard message is 80 characters; however, the Ouster Sensor can
support non-standard messages up to 85 characters (see Example 2 below).

The Ouster Sensor will deliver time in the UDP packet by calculating seconds since 00:00:00 Thursday,
1 January 1970. nmea_leap_seconds by default is 0, meaning this calculation will not take into account
any leap seconds. If nmea_leap_seconds is 0 then the reported time is Unix Epoch time. As of February,
2019 Coordinated Universal Time (UTC) lags behind International Atomic Time (TAI) by an offset of 37
seconds (10 seconds from the initial UTC offset when UTC was introduced in 1972 + 27 leap seconds
announced in the intervening years). Therefore, setting nmea_leap_seconds to 37 in February of 2019
would make the timestamps match the TAI standard.

nmea_in_polarity by default is ACTIVE_HIGH. This means that a UART start bit will occur directly after a
falling edge. If using RS-232, the UART signal may be inverted (where a start bit occurs directly after
a rising edge). In this case, nmea_in_polarity should be set to ACTIVE_LOW.

Example 1 Message:

$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A

→

29

Field Description
$GPRMC Recommended Minimum sentence C
123519 Fix taken at 12:35:19 UTC
A Status A=active or V=Void
4807.038 Latitude 48 deg 07.038’
N Latitude cardinal reference
01131.000 Longitude 11 deg 31.000’
E Longitude cardinal reference
022.4 Speed over the ground in knots
084.4 Track angle in degrees True
230394 Date - 23rd of March 1994
003.1 Magnetic Variation
W Magnetic cardinal reference
A [Optional] A=autonomous, D=differential, E=Estimated, N=not valid, S=Simulator
*6A The checksum data, always begins with *

Example 2 Message:

$GPRMC,042901.00,A,3745.871698,N,12224.825960,W,0.874,327.72,130219,13.39,E,A,V*60

→

Field Description
$GPRMC Recommended Minimum sentence C
042901.00 Fix taken at 4:29:01 UTC
A Status A=active or V=Void
3745.871698 Latitude 37 deg 45.871698’
N Latitude cardinal reference
12224.825960 Longitude 12 deg 24.825960’
W Longitude cardinal reference
0.874 Speed over the ground in knots
327.72 Track angle in degrees True
130219 Date - 13th of February 2019
13.39 Magnetic Variation
E Magnetic cardinal reference
A [Optional] A=autonomous, D=differential, E=Estimated, N=not valid, S=Simulator
*60 The checksum data, always begins with *

6 Updating Firmware

Sensor firmware can be updated with an Ouster-provided firmware file from
www.ouster.com/resources (or directly from the deployment engineering team) by accessing
the sensor over http - e.g., http://os1-991900123456.local/ and uploading the file as prompted.

Always check your firmware version before attempting an update. Only update to a equal or higher
version number. Do not roll back firmware to lower numbered versionswithout havingbeen instructed
to do so by Ouster deployment engineering.

30

https://www.ouster.com/resources
http://os1-991900123456.local

7 Troubleshooting

Starting from firmware v1.11, the sensor HTTP server page http://os1-991900123456.local/ has
Dashboard, Diagnostics, Documentation and Reset Configuration buttons:

Dashboard: Current page that lists some basic sensor information, and allows sensor firmware
upgrade.

Diagnostics: Diagnostic information and system journal that can be downloaded and included
when contacting Ouster for service.

Documentation: Sensor User Guide

Reset Configuration: Sensor factory configuration that can be reset to if desired. This will erase
any custom configuration that you set on the sensor previously.

Many initial problmes with the OS1 are associated with the sensor not properly being assigned an IP
address by a network switch or DHCP server on a client computer. Check your networking settings,
the steps in Section 3, and that all wires are firmly connected if you suspect this problem. Note that
if the sensor is not connected via gigabit Ethernet, it will stop sending data and will output an error
code if it fails to achieve a 1000 Mb/s+ full duplex link.

To check for hardware errors, use the get_alerts command as described in Section 3.3.

If the watchdog is triggered (when various temperature limits are exceeded or uplink/downlink has
failed), an alert code will be appended to the end of TCP command get_alerts. The sensor has a
limited-size buffer that will record the first few alerts detected by the sensor.

The alerts reported have the following format:

{
"category": "Category of the alert: e.g. OVERTEMP, UDP_TRANSMISSION",
"level": "Level of alert: e.g. NOTICE, WARNING, ERROR",
"realtime": "The timestamp of the alert in nanoseconds",
"active": "Whether the alert is active or not: <true/false>",
"msg": "A description of the alert",
"cursor": "The sequential number of the alert, starting from 0 counting up",
"id": "The hexadecimal identification code of the alert: e.g. 0x01000017",
"msg_verbose": "Any additional verbose description that the alert may present"

}

Example showing active and logged forced temperature sensor failures occuring at timestamps
1569712873477772800, 1569712879991844096, 1569712884968876544 (nanoseconds). The first
logged error then resolves itself at 1569713260229536000. The example has been JSON formatted:

{
"active": [

{
"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712879991844096",
"active": true,

(continues on next page)

31

http://os1-991900123456.local

(continued from previous page)

"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 1,
"id": "0x01000001",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712884968876544",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 2,
"id": "0x01000002",
"msg_verbose": ""

}
],
"next_cursor": 4,
"log": [

{
"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712873477772800",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 0,
"id": "0x01000000",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712879991844096",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 1,
"id": "0x01000001",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712884968876544",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor":2 ,
"id": "0x01000002",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569713260229536000",
"active": false,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",

(continues on next page)

32

(continued from previous page)

"cursor": 3,
"id": "0x01000000",
"msg_verbose": ""

}
]

}

33

Change Log

→

Version v1.6.0

Date 2018-08-16

Description

Add get_sensor_info command gives prod_line info.

→

Version v1.7.0

Date 2018-09-05

Description

No TCP command change.

→

Version v1.8.0

Date 2018-10-11

Description

get_sensor_info command gives INITIALIZING, UPDATING, RUNNING, ERROR and UNCONFIGURED status.

→

Version v1.9.0

Date 2018-10-24

Description

No TCP command change.

→

Version v1.10.0

Date 2018-12-11

Description

Remove all references of pulse_mode.

Add get_alerts, pps_rate and pps_angle usage commands and expected output.

Remove TCP commands prior to v1.5.1.

34

→

Version v1.11.0

Date 2019-03-25

Description

Add section on HTTP API commands.

TCP Port now hardcoded to 7501; port is no longer configurable.

Update to SYNC_PULSE_IN andMULTIPURPOSE_IO interface and configuration parameters (see de-
tails below).

35

Details on interface changes:

Configuration parameters name changes:

pps_in_polarity changed to sync_pulse_in_polarity

pps_out_mode changed to multipurpose_io_mode

pps_out_polarity changed to sync_pulse_out_polarity

pps_rate changed to sync_pulse_out_frequency

pps_angle changed to sync_pulse_out_angle

pps_pulse_width changed to sync_pulse_out_pulse_width

New configuration parameters:

nmea_in_polarity

nmea_ignore_valid_char

nmea_baud_rate

nmea_leap_seconds

Configuration parameters option changes:

timestamp_mode

TIME_FROM_PPS changed to TIME_FROM_SYNC_PULSE_IN

multipurpose_io_mode (formerly pps_out_mode)

OUTPUT_PPS_OFF changed to OFF

OUTPUT_FROM_PPS_IN_SYNCED changed to OUTPUT_FROM_SYNC_PULSE_IN

Removed OUTPUT_FROM_PPS_DEFINED_RATE

Added INPUT_NMEA_UART

TCP command changes:

Added commands:

get_time_info

Changed commands:

get_config_txt (returned dictionary keys match parameter changes)

Removed commands:

set_pps_in_polarity

get_pps_out_mode

set_pps_out_mode

get_timestamp_mode

set_timestamp_mode

Polarity changes:

sync_pulse_in_polarity was corrected to match parameter naming.

sync_pulse_out_polarity was corrected to match parameter naming.

36

→

Version v1.12.0

Date

Description

Corrected IMU axis directions to match sensor coordinate frame. See section Section 4.1 for details
on sensor coordinate frame. This change inverts IMU X, Y, and Z axis relative to v1.11.0.

→

Version v1.13.0

Date

Description

Add TCP command get_udp_dest_auto

TCP command get_alerts, includes more descriptive errors for troubleshooting

Packet Status now called Azimuth Data Block Status and is calculated differently

Packets with bad CRC are now dropped upstream and replaced with 0 padded packets to ensure all
packets are sent for each frame.

Return format of TCP command get_time_info updated.

Removed reference to window_rejection_enable

37

8 HTTP API Reference

HTTP API developer reference guide. This documents the interface for HTTP API and is accessible via
/api/v1 on the sensor hosted HTTP server.

API Resources

system/firmware

system/network

system/time

8.1 system/firmware

GET system/firmware

GET /api/v1/system/firmware HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Host: 192.0.2.123
content-type: application/json; charset=UTF-8

{
"fw": "ousteros-image-prod-aries-v1.11.0"

}

→
Response JSON Object

fw (string) – Running firmware image name and version.
Status Codes

200 OK – No error

8.2 system/network

GET system/network
Get the system network configuration.

GET /api/v1/system/network HTTP/1.1
Host: 192.0.2.123

38

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"carrier": true,
"duplex": "full",
"ethaddr": "bc:0f:a7:00:01:2c",
"hostname": "os1-991900123456",
"ipv4": {

"addr": "192.0.2.123/24",
"link_local": "169.254.245.183/16",
"override": null

},
"ipv6": {

"link_local": "fe80::be0f:a7ff:fe00:12c/64"
},
"speed": 1000

}

→
Response JSON Object

carrier (boolean) – State of Ethernet link, true when physical layer is connected.
duplex (string) – Duplex mode of Ethernet link, half or full.
ethaddr (string) – Ethernet hardware (MAC) address.
hostname (string) – Hostname of the sensor, also used when requesting DHCP lease.
ipv4 (object) – See ipv4 object
ipv6.link_local (string) – Link-local IPv6 address.
speed (integer) – Ethernet physical layer speed in Mbps, should be 1000 Mbps.

Status Codes
200 OK – No error

GET system/network/ipv4
Get the IPv4 network configuration.

GET /api/v1/system/network/ipv4 HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"addr": "192.0.2.123/23",
"link_local": "169.254.245.183/16",
"override": null

}

→
Response JSON Object

addr (string) – Current global or private IPv4 address.
link_local (string) – Link-local IPv4 address.
override (string) – Static IP override value, this should match addr. This value will be null when
unset and operating in DHCPmode.

Status Codes
200 OK – No error

39

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

GET system/network/ipv4/override
Get the current IPv4 static IP address override.

GET /api/v1/system/network/ipv4/override HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

null

→
Response JSON Object

string – Static IP override value, this should match addr. This value will be null when unset and
operating in DHCPmode.

Status Codes
200 OK – No error

PUT system/network/ipv4/override
Override the default dynamic behavior and set a static IP address.

Note: The sensor will reset the network configuration after a short sub second delay (to allow
for the HTTP response to be sent). After this delay the sensor will only be reachable on the newly
set IPv4 address.

The sensor needs to be reachable either by dynamic DHCP configuration or by an existing static
IP override from the host reconfiguring the sensor.

Warning: If an unreachable network address is set, the sensor will become unreachable.

Static IP override should only be used in special use cases. The dynamic DHCP configuration
is recommended where possible.

PUT /api/v1/system/network/ipv4/override HTTP/1.1
Content-Type: application/json
Host: 192.0.2.123

"192.0.2.100/24"

→
Request JSON Object

string – Static IP override value with subnet mask
Response JSON Object

string – Static IP override value that system will set after a short delay.
Status Codes

200 OK – No error

DELETE system/network/ipv4/override
Delete the static IP override value and return to dynamic configuration.

40

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Note: The sensor will reset the network configuration after a short sub second delay (to allow
for the HTTP response to be sent). After this delay the sensor will only be reachable on the newly
set IPv4 address.

The sensor may be unreachable for several seconds while a DHCP lease is obtained from a net-
work DHCP server.

DELETE /api/v1/system/network/ipv4/override HTTP/1.1
Host: 192.0.2.123

→
Status Codes

204 No Content – No error, no content

8.3 system/time

GET system/time
Get the system time configuration for all timing components of the sensor.

GET /api/v1/system/time HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"ptp": {

"current_data_set": {
"mean_path_delay": 37950,
"offset_from_master": -211488,
"steps_removed": 1

},
"parent_data_set": {
"gm_clock_accuracy": 33,
"gm_clock_class": 6,
"gm_offset_scaled_log_variance": 20061,
"grandmaster_identity": "001747.fffe.700038",
"grandmaster_priority1": 128,
"grandmaster_priority2": 128,
"observed_parent_clock_phase_change_rate": 2147483647,
"observed_parent_offset_scaled_log_variance": 65535,
"parent_port_identity": "001747.fffe.700038-1",
"parent_stats": 0

},
"port_data_set": {
"announce_receipt_timeout": 3,
"delay_mechanism": 1,
"log_announce_interval": 1,
"log_min_delay_req_interval": 0,
"log_min_pdelay_req_interval": 0,

(continues on next page)

41

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

(continued from previous page)

"log_sync_interval": 0,
"peer_mean_path_delay": 0,
"port_identity": "bc0fa7.fffe.00012c-1",
"port_state": "SLAVE",
"version_number": 2

},
"time_properties_data_set": {
"current_utc_offset": 37,
"current_utc_offset_valid": 1,
"frequency_traceable": 1,
"leap59": 0,
"leap61": 0,
"ptp_timescale": 1,
"time_source": 32,
"time_traceable": 1

},
"time_status_np": {
"cumulative_scaled_rate_offset": 0,
"gm_identity": "001747.fffe.700038",
"gm_present": true,
"gm_time_base_indicator": 0,
"ingress_time": 1552413985821448000,
"last_gm_phase_change": "0x0000'0000000000000000.0000",
"master_offset": -211488,
"scaled_last_gm_phase_change": 0

}
},
"sensor": {

"nmea": {
"baud_rate": "BAUD_9600",
"diagnostics": {

"decoding": {
"date_decoded_count": 0,
"last_read_message": "",
"not_valid_count": 0,
"utc_decoded_count": 0

},
"io_checks": {
"bit_count": 1,
"bit_count_unfilterd": 0,
"char_count": 0,
"start_char_count": 0

}
},
"ignore_valid_char": 0,
"leap_seconds": 0,
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"sync_pulse_in": {
"diagnostics": {

"count": 1,
"count_unfiltered": 0,
"last_period_nsec": 0

(continues on next page)

42

(continued from previous page)

},
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"sync_pulse_out": {
"angle_deg": 360,
"frequency_hz": 1,
"mode": "OFF",
"polarity": "ACTIVE_HIGH",
"pulse_width_ms": 10

},
"timestamp": {
"mode": "TIME_FROM_INTERNAL_OSC",
"time": 57178.44114677,
"time_options": {

"internal_osc": 57178,
"ptp_1588": 1552413986,
"sync_pulse_in": 1

}
}

},
"system": {

"monotonic": 57191.819600378,
"realtime": 1552413949.3948405,
"tracking": {
"frequency": -7.036,
"last_offset": 5.942e-06,
"leap_status": "normal",
"ref_time_utc": 1552413947.8259742,
"reference_id": "70747000",
"remote_host": "ptp",
"residual_frequency": 0.006,
"rms_offset": 5.358e-06,
"root_delay": 1e-09,
"root_dispersion": 0.000129677,
"skew": 1.144,
"stratum": 1,
"system_time_offset": -2.291e-06,
"update_interval": 2

}
}

}

→
Response JSON Object

string – See sub objects for details.
Status Codes

200 OK – No error

GET system/time/system
Get the operating system time status. These values relate to the operating system clocks, and
not clocks related to hardware timestamp data from the lidar sensor.

43

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

GET /api/v1/system/time/system HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"monotonic": 345083.599570944,
"realtime": 1551814510.730453,
"tracking": {

"frequency": -6.185,
"last_offset": -3.315e-06,
"leap_status": "normal",
"ref_time_utc": 1551814508.1982567,
"reference_id": "70747000",
"remote_host": "ptp",
"residual_frequency": -0.019,
"rms_offset": 4.133e-06,
"root_delay": 1e-09,
"root_dispersion": 0.000128737,
"skew": 1.14,
"stratum": 1,
"system_time_offset": 4.976e-06,
"update_interval": 2

}
}

→
Response JSON Object

monotonic (float) – Monotonic time of operating system. This timestamp never counts back-
wards and is the time since boot in seconds.
realtime (float) – Time in seconds since the Unix epoch, should match wall time if synchronized
with external time source.
tracking (object) – Operating system time synchronization tracking status. See chronyc track-
ing documentation for more information.

Status Codes
200 OK – No error

System tracking fields of interest:

→
Rms_offset Long-term average of the offset value.
System_time_offset Time delta (in seconds) between estimate of the operating system time and the

current true time.
Last_offset Estimated local offset on the last clock update.
Ref_time_utc UTC Time at which the last measurement from the reference source was processed.
Remote_host This is either ptp if the system is synchronizing to a PTP time source or the address of a

remote NTP server the system has selected if the sensor is connected to the Internet.

GET system/time/ptp
Get the status of the PTP time synchronization daemon.

Note: See the IEEE 1588-2008 standard for more details on the standard management mes-

44

https://chrony.tuxfamily.org/manual.html#tracking-command
https://chrony.tuxfamily.org/manual.html#tracking-command
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://ieeexplore.ieee.org/document/4579760

sages.

GET /api/v1/system/time/ptp HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"current_data_set": {

"mean_path_delay": 30110,
"offset_from_master": 224159,
"steps_removed": 1

},
"parent_data_set": {

"gm_clock_accuracy": 33,
"gm_clock_class": 6,
"gm_offset_scaled_log_variance": 20061,
"grandmaster_identity": "001747.fffe.700038",
"grandmaster_priority1": 128,
"grandmaster_priority2": 128,
"observed_parent_clock_phase_change_rate": 2147483647,
"observed_parent_offset_scaled_log_variance": 65535,
"parent_port_identity": "001747.fffe.700038-1",
"parent_stats": 0

},
"port_data_set": {

"announce_receipt_timeout": 3,
"delay_mechanism": 1,
"log_announce_interval": 1,
"log_min_delay_req_interval": 0,
"log_min_pdelay_req_interval": 0,
"log_sync_interval": 0,
"peer_mean_path_delay": 0,
"port_identity": "bc0fa7.fffe.00012c-1",
"port_state": "SLAVE",
"version_number": 2

},
"time_properties_data_set": {

"current_utc_offset": 37,
"current_utc_offset_valid": 1,
"frequency_traceable": 1,
"leap59": 0,
"leap61": 0,
"ptp_timescale": 1,
"time_source": 32,
"time_traceable": 1

},
"time_status_np": {

"cumulative_scaled_rate_offset": 0,
"gm_identity": "001747.fffe.700038",
"gm_present": true,
"gm_time_base_indicator": 0,
"ingress_time": 1551814546772493800,

(continues on next page)

45

(continued from previous page)

"last_gm_phase_change": "0x0000'0000000000000000.0000",
"master_offset": 224159,
"scaled_last_gm_phase_change": 0

}
}

→
Response JSON Object

current_data_set (object) – Result of the PMC GET CURRENT_DATA_SET command.
parent_data_set (object) – Result of the PMC GET PARENT_DATA_SET command.
port_data_set (object) – Result of the PMC GET PORT_DATA_SET command.
time_properties_data_set (object) – Result of the PMC GET TIME_PROPERTIES_DATA_SET command.
time_status_np (object) – Result of the PMC GET TIME_STATUS_NP command. This is a linuxptp
non-portable command.

Status Codes
200 OK – No error

Fields of interest:

→
Current_data_set.offset_from_master Offset from master time source in nanoseconds as calculated

during the last update from master.
Parent_data_set.grandmaster_identity This should match the local grandmaster clock. If this displays

the sensor’s clock identity (derived from Ethernet hardware address) then this indicates the sensor
is not properly synchronized to a grandmaster.

Parent_data_set Various information about the selected master clock.
Port_data_set.port_state This value will be SLAVE when a remote master clock is selected. See

parent_data_set for selected master clock.
Port_data_set Local sensor PTP configuration values. Grandmaster clock needs to match these for

proper time synchronization.
Time_properties_data_set PTP properties as given by master clock.
Time_status_np.gm_identity Selected grandmaster clock identity.
Time_status_np.gm_present True when grandmaster has been detected. This may stay true even if

grandmaster goes off-line. Use port_data_set.port_state to determine up-to-date synchronization
status. When this is false then the local clock is selected.

Time_status_np.ingress_time Indicates when last PTP message was received. Units are in nanosec-
onds.

Time_status_np Linux PTP specific diagnostic values. The Red Hat manual provides somemore informa-
tion on these fields

GET system/time/sensor
Get the lidar sensor time status. These values relate to the hardware timestamping mechanism
of the sensor.

GET /api/v1/system/time/sensor HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"nmea": {

"baud_rate": "BAUD_9600",
(continues on next page)

46

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/s1-using_the_ptp_management_client

(continued from previous page)

"diagnostics": {
"decoding": {

"date_decoded_count": 0,
"last_read_message": "",
"not_valid_count": 0,
"utc_decoded_count": 0

},
"io_checks": {

"bit_count": 1,
"bit_count_unfilterd": 0,
"char_count": 0,
"start_char_count": 0

}
},
"ignore_valid_char": 0,
"leap_seconds": 0,
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"sync_pulse_in": {

"diagnostics": {
"count": 1,
"count_unfiltered": 0,
"last_period_nsec": 0

},
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"sync_pulse_out": {

"angle_deg": 360,
"frequency_hz": 1,
"mode": "OFF",
"polarity": "ACTIVE_HIGH",
"pulse_width_ms": 10

},
"timestamp": {

"mode": "TIME_FROM_INTERNAL_OSC",
"time": 57178.44114677,
"time_options": {
"internal_osc": 57178,
"ptp_1588": 1552413986,
"sync_pulse_in": 1

}
}

}

For more information on these parameters refer to Section 3.3 for the get_time_info TCP com-
mand.

47

9 PTP Quickstart Guide

There are many configurations for a PTP network, this quick start guide aims to cover the basics by
using Ubuntu 18.04 as an example. It provides configuration settings for a commercial PTP grand-
master clock and also provides directions on setting up a Linux computer (Ubuntu 18.04) to function
as a PTP grandmaster.

The linuxptp project provides a suite of PTP tools that can be used to serve as a PTP master clock for
a local network of sensors.

Table of Contents

Assumptions

Physical Network Setup

Third Party Grandmaster Clock

Linux PTP Grandmaster Clock

Example Network Setup

Installing Necessary Packages

Ethernet Hardware Timestamp Verification

Configuring ptp4l for Multiple Ports

Configuring ptp4l as a Local Master Clock

Configuring phc2sys to Synchronize the System Time to the PTP Clock

Configuring Chrony to Set System Clock Using PTP

Verifying Operation

HTTP API

LinuxPTP PMC Tool

Tested Grandmaster Clocks

9.1 Assumptions

Command line Linux knowledge (e.g., package management, command line familiarity, etc.).

Ethernet interfaces that support hardware timestamping.

48

http://linuxptp.sourceforge.net/

Ubuntu 18.04 is assumed for this tutorial, but any modern distribution should suffice.

Knowledge of systemd service configuration and management.

Familiarity with Linux permissions.

9.2 Physical Network Setup

Ensure the Ouster sensor is connected to the PTP master clock with at most one network switch.
Ideally the sensor should be connected directly to the PTP grandmaster. Alternatively, a simple layer-2
gigabit Ethernet switch will suffice. Multiple switches are not recommended and will add unnecessary
jitter.

9.3 Third Party Grandmaster Clock

A dedicated grandmaster clock should be used for the highest absolute accuracy often with a GPS
receiver.

It must be configured with the following parameters which match the linuxptp client defaults:

Transport: UDP IPv4

Delay Mechanism: E2E

Sync Mode: Two-Step

Announce Interval: 1 - sent every 2 seconds

Sync Interval: 0 - sent every 1 second

Delay Request Interval: 0 - sent every 1 second

For more settings, review the port_data_set field returned from the sensor’s HTTP system/time/ptp
interface.

9.4 Linux PTP Grandmaster Clock

An alternative to an external grandmaster PTP clock is to run a local Linux PTPmaster clock if accuracy
allows. This is often implemented on a vehicle computer that interfaces directly with the lidar sensors.

This section outlines how to configure a master clock.

Example Network Setup

Installing Necessary Packages

Ethernet Hardware Timestamp Verification

49

Configuring ptp4l for Multiple Ports

Configuring ptp4l as a Local Master Clock

Configuring phc2sys to Synchronize the System Time to the PTP Clock

Configuring Chrony to Set System Clock Using PTP

50

Example Network Setup

This section assumes the following network setup as it has elements of a local master clock and the
option for an upstream PTP time source.

+-------------------------------------+
| Ubuntu 18.04 System |
| * 2x Intel i210 Ethernet Interfaces |
| * Linux PTP service |
| |
| eno1 eno2 |
+-------+---------------------+-------+

| |
+-------+-------+ +--------+------+
| Trimble GM100 | | + +
GPS -> PTP		Ouster OS1	
grandmaster			
(optional)			
+---------------+ +---------------- |

+--------------- +

The focus is on configuring the Linux PTP service to serve a common clock to all the downstream
Ouster OS1 sensors using the Linux system time from the Ubuntu host machine.

Optionally, a grandmaster clock can be added to discipline the system time of the Linux host.

Installing Necessary Packages

Several packages are needed for PTP functionality and verification:

linuxptp - Linux PTP package with the following components:

ptp4l daemon to manage hardware and participate as a PTP node

phc2sys to synchronize the Ethernet controller’s hardware clock to the Linux system clock
or shared memory region

pmc to query the PTP nodes on the network.

chrony - A NTP and PTP time synchronization daemon. It can be configured to listen to both
NTP time sources via the Internet and a PTP master clock such as one provided a GPS with PTP
support. This will validate the time configuration makes sense given multiple time sources.

ethtool - A tool to query the hardware and driver capabilities of a given Ethernet interface.

$ sudo apt update
...
Reading package lists... Done
Building dependency tree
Reading state information... Done

$ sudo apt install linuxptp chrony ethtool
Reading package lists... Done
Building dependency tree

(continues on next page)

51

(continued from previous page)

Reading state information... Done
The following NEW packages will be installed:

chrony ethtool linuxptp
0 upgraded, 3 newly installed, 0 to remove and 29 not upgraded.
Need to get 430 kB of archives.
After this operation, 1,319 kB of additional disk space will be used.
Get:1 http://us.archive.ubuntu.com/ubuntu bionic/main amd64 ethtool amd64 1:4.15-0ubuntu1 [114 kB]
Get:2 http://us.archive.ubuntu.com/ubuntu bionic/universe amd64 linuxptp amd64 1.8-1 [112 kB]
Get:3 http://us.archive.ubuntu.com/ubuntu bionic-updates/main amd64 chrony amd64 3.2-4ubuntu4.2 [203 kB]
Fetched 430 kB in 1s (495 kB/s)
Selecting previously unselected package ethtool.
(Reading database ... 117835 files and directories currently installed.)
Preparing to unpack .../ethtool_1%3a4.15-0ubuntu1_amd64.deb ...
Unpacking ethtool (1:4.15-0ubuntu1) ...
Selecting previously unselected package linuxptp.
Preparing to unpack .../linuxptp_1.8-1_amd64.deb ...
Unpacking linuxptp (1.8-1) ...
Selecting previously unselected package chrony.
Preparing to unpack .../chrony_3.2-4ubuntu4.2_amd64.deb ...
Unpacking chrony (3.2-4ubuntu4.2) ...
Setting up linuxptp (1.8-1) ...
Processing triggers for ureadahead (0.100.0-20) ...
ureadahead will be reprofiled on next reboot
Setting up chrony (3.2-4ubuntu4.2) ...
Processing triggers for systemd (237-3ubuntu10.13) ...
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
Setting up ethtool (1:4.15-0ubuntu1) ...

Ethernet Hardware Timestamp Verification

Identify the ethernet interface to be used on the client (Linux) machine, e.g., eno1. Run the eth-
tool utility and query this network interface for supported capabilities.

Output of ethtool -T for a functioning Intel i210 Ethernet interface:

$ sudo ethtool -T eno1
Time stamping parameters for eno1:
Capabilities:

hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)

PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:

off (HWTSTAMP_TX_OFF)
on (HWTSTAMP_TX_ON)

Hardware Receive Filter Modes:
none (HWTSTAMP_FILTER_NONE)
all (HWTSTAMP_FILTER_ALL)

52

https://www.kernel.org/pub/software/network/ethtool/
https://www.kernel.org/pub/software/network/ethtool/
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/i210-ethernet-controller-datasheet.pdf

Configuring ptp4l for Multiple Ports

On a Linux systemwith multiple Ethernet ports (i.e. Intel i210) ptp4l needs to be configured to support
all of them.

Modify /etc/linuxptp/ptp4l.conf and append the following, replacing eno1 and eno2 with the appropri-
ate interface names:

boundary_clock_jbod 1
[eno1]
[eno2]

The default systemd service file for Ubuntu 18.04 attempts to use the eth0 address on the command
line. Override systemd service file so that the configuration file is used instead of hard coded in the
service file.

Create a systemd drop-in directory to override the system service file:

$ sudo mkdir -p /etc/systemd/system/ptp4l.service.d

Create a file at /etc/systemd/system/ptp4l.service.d/override.conf with the following contents:

[Service]
ExecStart=
ExecStart=/usr/sbin/ptp4l -f /etc/linuxptp/ptp4l.conf

Restart the ptp4l service so the change takes effect:

$ sudo systemctl daemon-reload
$ sudo systemctl restart ptp4l
$ sudo systemctl status ptp4l
* ptp4l.service - Precision Time Protocol (PTP) service

Loaded: loaded (/lib/systemd/system/ptp4l.service; enabled; vendor preset: enabled)
Drop-In: /etc/systemd/system/ptp4l.service.d

└─override.conf
Active: active (running) since Wed 2019-03-13 14:38:57 PDT; 3s ago
Docs: man:ptp4l

Main PID: 25783 (ptp4l)
Tasks: 1 (limit: 4915)

CGroup: /system.slice/ptp4l.service
└─25783 /usr/sbin/ptp4l -f /etc/linuxptp/ptp4l.conf

Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] port 1: INITIALIZING to LISTENING on INITIALIZE
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] driver changed our HWTSTAMP options
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] tx_type 1 not 1
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] rx_filter 1 not 12
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] port 2: INITIALIZING to LISTENING on INITIALIZE
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 0: INITIALIZING to LISTENING on INITIALIZE
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 1: link up
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 2: link down
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 2: LISTENING to FAULTY on FAULT_DETECTED (FT_
↪→UNSPECIFIED)
Mar 13 14:38:58 leadlizard ptp4l[25783]: [590189.360] port 1: new foreign master 001747.fffe.700038-1

53

The above systemctl status ptp4l console output shows systemd correctly read the override file cre-
ated earlier before starting several seconds after the restart command.

The log output shows that a grandmaster clock has been discovered on port 1 (eno1) and port 2 (eno2) is
currently disconnected and in the faulty state as expected. In the test network a Trimble Thunderbolt
PTP GM100 Grandmaster Clock is attached on eno1.

Logs can be monitored (i.e. followed) like so:

$ journalctl -f -u ptp4l
-- Logs begin at Fri 2018-11-30 06:40:50 PST. --
Mar 13 14:51:37 leadlizard ptp4l[25783]: [590948.224] master offset -17 s2 freq -25963 path delay �
↪→ 14183
Mar 13 14:51:38 leadlizard ptp4l[25783]: [590949.224] master offset -13 s2 freq -25964 path delay �
↪→ 14183
Mar 13 14:51:39 leadlizard ptp4l[25783]: [590950.225] master offset 35 s2 freq -25920 path delay �
↪→ 14192
Mar 13 14:51:40 leadlizard ptp4l[25783]: [590951.225] master offset -59 s2 freq -26003 path delay �
↪→ 14201
Mar 13 14:51:41 leadlizard ptp4l[25783]: [590952.225] master offset -24 s2 freq -25986 path delay �
↪→ 14201
Mar 13 14:51:42 leadlizard ptp4l[25783]: [590953.225] master offset -39 s2 freq -26008 path delay �
↪→ 14201
Mar 13 14:51:43 leadlizard ptp4l[25783]: [590954.225] master offset 53 s2 freq -25928 path delay �
↪→ 14201
Mar 13 14:51:44 leadlizard ptp4l[25783]: [590955.226] master offset -85 s2 freq -26050 path delay �
↪→ 14207
Mar 13 14:51:45 leadlizard ptp4l[25783]: [590956.226] master offset 127 s2 freq -25863 path delay �
↪→ 14207
Mar 13 14:51:46 leadlizard ptp4l[25783]: [590957.226] master offset 9 s2 freq -25943 path delay �
↪→ 14208
Mar 13 14:51:47 leadlizard ptp4l[25783]: [590958.226] master offset -23 s2 freq -25973 path delay �
↪→ 14208
Mar 13 14:51:48 leadlizard ptp4l[25783]: [590959.226] master offset -61 s2 freq -26018 path delay �
↪→ 14190
Mar 13 14:51:49 leadlizard ptp4l[25783]: [590960.226] master offset 69 s2 freq -25906 path delay �
↪→ 14190
Mar 13 14:51:50 leadlizard ptp4l[25783]: [590961.226] master offset -73 s2 freq -26027 path delay �
↪→ 14202
Mar 13 14:51:51 leadlizard ptp4l[25783]: [590962.226] master offset 19 s2 freq -25957 path delay �
↪→ 14202
Mar 13 14:51:52 leadlizard ptp4l[25783]: [590963.226] master offset 147 s2 freq -25823 path delay �
↪→ 14202
...

Configuring ptp4l as a Local Master Clock

The IEEE-1588BestMaster ClockAlgorithm (BMCA) will select a grandmaster clock based on a number
ofmasters. Inmost networks there should be only a singlemaster. In the example network the Ubuntu
machine will be configured with a non-default clockClass so its operation qualifies it to win the BMCA.

Replace the default value with a lower clock class (higher priority) and restart linuxptp. Edit /etc/
linuxptp/ptp4l.conf and comment out the default clockClass value and insert a line setting it 128.

54

#clockClass 248
clockClass 128

Restart ptp4l so the configuration change takes effect.

$ sudo systemctl restart ptp4l

This will configure ptp4l to advertise a master clock on eno2 as a clock that will win the BMCA for an
Ouster OS1 sensor.

However, the ptp4l service is only advertising the Ethernet controller’s PTP hardware clock, not the
Linux system time as is often expected.

Configuring phc2sys to Synchronize the System Time to the PTP Clock

To synchronize the Linux system time to the the PTP hardware clock the phc2sys utility needs to be
run. The following configuration will tell phc2sys to take the Linux CLOCK_REALTIME and write that time
to the PTP hardware clock in the Ethernet controller for eno2. These interfaces are then connected to
PTP slaves such as Ouster OS1 sensors.

Create a systemd drop-in directory to override the system service file:

$ sudo mkdir -p /etc/systemd/system/phc2sys.service.d

Create a file at /etc/systemd/system/phc2sys.service.d/override.conf with the following contents:

[Service]
ExecStart=
ExecStart=/usr/sbin/phc2sys -w -s CLOCK_REALTIME -c eno2

Note: If multiple interfaces need to be synchronized from CLOCK_REALTIME then multipe instances of
the phc2sys service need to be run as it only accepts a single slave (i.e. -c) argument.

Restart the phc2sys service so the change takes effect:

$ sudo systemctl daemon-reload
$ sudo systemctl restart phc2sys
$ sudo systemctl status phc2sys

Configuring Chrony to Set System Clock Using PTP

An upstream PTP grandmaster clock (e.g., a GPS disciplined PTP clock) can be used to set the system
time if precise absolute time is needed for sensor data. Chrony is a Linux time service that can read
from NTP and PTP and set the Linux system time using the most accurate source available. With a
proper functioning PTP grandmaster the PTP time sourcewill be selected and the error from the public
time servers can be reviewed.

55

The following phc2shm service will synchronize the time from eno1 (where the external grandmaster
is attached) to the system clock.

Create a file named /etc/systemd/system/phc2shm.service with the following contents:

/etc/systemd/system/phc2shm.service
[Unit]
Description=Synchronize PTP hardware clock (PHC) to NTP SHM
Documentation=man:phc2sys
After=ntpdate.service
Requires=ptp4l.service
After=ptp4l.service

[Service]
Type=simple
ExecStart=/usr/sbin/phc2sys -s eno1 -E ntpshm -w

[Install]
WantedBy=multi-user.target

Then start the newly created service and check that it started.

$ sudo systemctl start phc2shm
$ sudo systemctl status phc2shm

Add the PTP time source to the chrony configuration which will read the shared memory region man-
aged by the phc2shm service created above.

Append the following to the /etc/chrony/chrony.conf file:

refclock SHM 0 poll 1 refid ptp

Restart chrony so the updated configuration file takes effect:

$ sudo systemctl restart chrony

After waiting a minute for the clock to synchronize, review the chrony client timing accuracy:

$ chronyc tracking
Reference ID : 70747000 (ptp)
Stratum : 1
Ref time (UTC) : Thu Mar 14 02:22:58 2019
System time : 0.000000298 seconds slow of NTP time
Last offset : -0.000000579 seconds
RMS offset : 0.001319735 seconds
Frequency : 0.502 ppm slow
Residual freq : -0.028 ppm
Skew : 0.577 ppm
Root delay : 0.000000001 seconds
Root dispersion : 0.000003448 seconds
Update interval : 2.0 seconds
Leap status : Normal

$ chronyc sources -v
(continues on next page)

56

(continued from previous page)

210 Number of sources = 9

.-- Source mode '^' = server, '=' = peer, '#' = local clock.
/ .- Source state '*' = current synced, '+' = combined , '-' = not combined,

| / '?' = unreachable, 'x' = time may be in error, '~' = time too variable.
|| .- xxxx [yyyy] +/- zzzz
|| Reachability register (octal) -. | xxxx = adjusted offset,
|| Log2(Polling interval) --. | | yyyy = measured offset,
|| \ | | zzzz = estimated error.
|| | | \
MS Name/IP address Stratum Poll Reach LastRx Last sample
===
#* ptp 0 1 377 1 +27ns[+34ns] +/- 932ns
^- chilipepper.canonical.com 2 6 377 61 -482us[-482us] +/- 99ms
^- pugot.canonical.com 2 6 377 62 -498us[-498us] +/- 112ms
^- golem.canonical.com 2 6 337 59 -467us[-468us] +/- 95ms
^- alphyn.canonical.com 2 6 377 58 +957us[+957us] +/- 95ms
^- legacy13.chi1.ntfo.org 3 6 377 62 -10ms[-10ms] +/- 178ms
^- tesla.selinc.com 2 6 377 128 +429us[+514us] +/- 42ms
^- io.crash-override.org 2 6 377 59 +441us[+441us] +/- 58ms
^- hadb2.smatwebdesign.com 3 6 377 58 +1364us[+1364us] +/- 99ms

Note that the Reference IDmatches the ptp refid from the chrony.conf file and that the sources output
shows the ptp reference id as selected (signified by the * state in the second column). Additionally,
the NTP time sources show a small relative error to the high accuracy PTP time source.

In this case the PTP grandmaster is properly functioning.

If this error is large, chrony will select the NTP time sources and mark the PTP time source as invalid.
This typically signifies that something is mis-configured with the PTP grandmaster upstream of this
device or the linuxptp configuration.

9.5 Verifying Operation

If the PTP grandmaster was just setup and configured, it’s recommended to power cycle the sensor.
The sensor will then jump to the correct time instead of slowly easing in the time adjustment which
will take time if the grandmaster initially set the sensor to the wrong time.

HTTP API

The sensor can be queried for the state of its local PTP service through the HTTP system/time/ptp.

JSON response fields to check:

parent_data_set.grandmaster_identity should list the identity of the local grandmaster

port_data_set.port_state should be SLAVE

57

LinuxPTP PMC Tool

The sensor will respond to PTP management messages. The linuxptp pmc (see man pmc) utility can be
used to query all PTP devices on the local network.

On the Linux host for the pmc utility to communicate with then run the following command:

$ sudo pmc 'get PARENT_DATA_SET' 'get CURRENT_DATA_SET' 'get PORT_DATA_SET' 'get TIME_STATUS_NP' -i eno2
sending: GET PARENT_DATA_SET
sending: GET CURRENT_DATA_SET
sending: GET PORT_DATA_SET
sending: GET TIME_STATUS_NP

bc0fa7.fffe.c48254-1 seq 0 RESPONSE MANAGEMENT PARENT_DATA_SET
parentPortIdentity ac1f6b.fffe.1db84e-2
parentStats 0
observedParentOffsetScaledLogVariance 0xffff
observedParentClockPhaseChangeRate 0x7fffffff
grandmasterPriority1 128
gm.ClockClass 6
gm.ClockAccuracy 0x21
gm.OffsetScaledLogVariance 0x4e5d
grandmasterPriority2 128
grandmasterIdentity 001747.fffe.700038

bc0fa7.fffe.c48254-1 seq 1 RESPONSE MANAGEMENT CURRENT_DATA_SET
stepsRemoved 2
offsetFromMaster 613554162.0
meanPathDelay 117977.0

bc0fa7.fffe.c48254-1 seq 2 RESPONSE MANAGEMENT PORT_DATA_SET
portIdentity bc0fa7.fffe.c48254-1
portState LISTENING
logMinDelayReqInterval 0
peerMeanPathDelay 0
logAnnounceInterval 1
announceReceiptTimeout 3
logSyncInterval 0
delayMechanism 1
logMinPdelayReqInterval 0
versionNumber 2

bc0fa7.fffe.c48254-1 seq 3 RESPONSE MANAGEMENT TIME_STATUS_NP
master_offset 613554162
ingress_time 0
cumulativeScaledRateOffset +0.000000000
scaledLastGmPhaseChange 0
gmTimeBaseIndicator 0
lastGmPhaseChange 0x0000'0000000000000000.0000
gmPresent true
gmIdentity 001747.fffe.700038

9.6 Tested Grandmaster Clocks

Trimble Thunderbolt PTP GM100 Grandmaster Clock

Firmware version: 20161111-0.1.4.0, November 11 2016 15:58:25

58

PTP configuration:

→

> get ptp eth0
Enabled : Yes

Clock ID : 001747.fffe.700038-1
Profile : 1588

Domain number : 0
Transport protocol : IPV4

IP Mode : Multicast
Delay Mechanism : E2E

Sync Mode : Two-Step
Clock Class : 6
Priority 1 : 128
Priority 2 : 128

Multicast TTL : 0
Sync interval : 0

Del Req interval : 0
Ann. interval : 1

Ann. receipt timeout : 3

Ubuntu 18.04 + Linux PTP as a master clock

Intel i210 Ethernet interface

PCI hardware identifiers: 8086:1533 (rev 03)

Ubuntu 18.04 kernel package: linux-image-4.18.0-16-generic

Ubuntu 18.04 linuxptp package: linuxptp-1.8-1

59

HTTP Routing Table
/system
GET system/firmware, 38
GET system/network, 38
GET system/network/ipv4, 39
GET system/network/ipv4/override, 39
GET system/time, 41
GET system/time/ptp, 44
GET system/time/sensor, 46
GET system/time/system, 43
PUT system/network/ipv4/override, 40
DELETE system/network/ipv4/override, 40

60

	Introduction
	Safety & Legal Notices
	Drivers & Interface
	Network Configuration
	HTTP Interface
	TCP API Command Set
	Lidar Data Format
	IMU Data Format
	Data Rates

	Coordinate Frames
	Sensor Coordinate Frame
	Lidar Intrinsic Beam Angles
	Lidar Range Data To XYZ Lidar Coordinate Frame
	Lidar Range Data To Sensor XYZ Coordinate Frame
	IMU Data To Sensor XYZ Coordinate Frame

	Time Synchronization
	Timing Overview Diagram
	Sensor Time Source
	External Trigger Clock Source
	NMEA Message Format

	Updating Firmware
	Troubleshooting
	HTTP API Reference
	system/firmware
	system/network
	system/time

	PTP Quickstart Guide
	Assumptions
	Physical Network Setup
	Third Party Grandmaster Clock
	Linux PTP Grandmaster Clock
	Verifying Operation
	Tested Grandmaster Clocks

	HTTP Routing Table

