

Dataspeed ADAS Kit

dSPACE/Simulink Interface Blockset

User Manual

Ford Vehicles

(DataspeedByWire-FORD-20190412.dbc)

Point of Contact:

support@dataspeedinc.com

mailto:support@dataspeedinc.com

2 | P a g e

i | P a g e

Contents

1. Introduction .. 1

2. Software Installation .. 2

3. Drive-by-Wire Interface Blocks .. 3

3.1. CAN Controller Setup ... 3

3.2. Throttle ... 4

3.3. Brake ... 7

3.4. Steering ... 10

3.5. Shifter ... 12

3.6. Turn Signal .. 14

4. Vehicle Data Blocks .. 16

4.1. Acceleration .. 17

4.2. BrakeInfo Report Data ... 18

4.3. Fuel Level .. 19

4.8. Tire Pressure ... 24

1.1. ADAS Kit Firmware Version .. 26

1.2. ADAS Kit License Info ... 27

2. Vehicle Control Blocks .. 31

2.1. System Enable Logic Block ... 32

2.2. Universal Lat/Long Controller (ULC) .. 34

3. Joystick Teleop Demo Model ... 35

1 | P a g e

1. Introduction

This document describes the dSPACE Simulink blockset library designed to communicate with the Dataspeed ADAS
Kit over CAN. For more details regarding the specific CAN messaging interface to the by-wire hardware modules,
please refer to the individual product datasheets:

• ThrottleBrakeDatasheet-XXX.pdf

• SteeringShifterDatasheet-XXX.pdf

The main Simulink library drive_by_wire_master.slx is shown in Figure 1. This library has the following

components:

• CAN Controller Setup – A pre-configured block that properly sets up the dSPACE RTICAN interface to send
messages to and from the Dataspeed ADAS Kit modules. All the dSPACE RTICAN blocks are pre-configured
to use the DataspeedByWire_XXX.dbc files provided with each firmware release to automatically
configure the message structure.

• Drive-By-Wire (DBW) Interface Blocks – Double-clicking this block opens the library containing all DBW
subsystem input/output interfaces, including throttle, brake, steering, shifting, and turn signaling.

• Vehicle Data Blocks – Double-clicking this block opens the library containing CAN interfaces to vehicle
data collected from proprietary OEM CAN messaging.

• Vehicle Control Blocks – Double-clicking this block opens the library containing blocks that provide
advanced control functionality over the vehicle.

• ADAS Kit Info Blocks – Double-clicking this block opens the library containing blocks that provide
information on the ADAS Kit (firmware versions, etc.) and static vehicle information such as the VIN and
platform type.

• Joystick Teleop Demo – This Simulink model demonstrates the usage of the DBW interface blocks and
provides a base upon which the user can develop.

Double-clicking the square box next to the model name will open a dialog box, shown in Figure 2.

The options are:

̶ Open – Opens the master copy of the demo model at its default location. This should only be done to
inspect the model, seeing it is the master copy.

̶ Copy – Places a copy of the demo model into the current MATLAB working directory. Making
changes to this copy will not affect the master copy.

2 | P a g e

Figure 1. Main Simulink library.

Figure 2. Demo Model dialog box.

2. Software Installation

The process of installing the DBW Simulink blockset into MATLAB is as follows.

1. Using File Explorer, copy the root DBW folder onto your hard drive in the place of your choosing.

2. Open MATLAB and change MATLAB’s present working directory to be this newly added folder.

3. At the MATLAB Command Line, type “install” to run the DBW Blockset installation M-file script.

4. When prompted, hit “Enter” on your keyboard.

5. The installation script will add all appropriate DBW Simulink blockset folders to your MATLAB path.

3 | P a g e

3. Drive-by-Wire Interface Blocks

This section describes the individual DBW interface blocks. These individual blocks can be found in the
dbw_interface_blocks.slx library, which can be opened from the main library. They are shown in Figure 3.

Figure 3. Drive-By-Wire Interface Blockset.

3.1. CAN Controller Setup

For this proprietary dSPACE block, the path to the DBC file that defines CAN message structures, is hardcoded.
Current dSPACE software does not support using relative paths. Therefore, after installing the Dataspeed
dSPACE/Simulink Blockset library onto your PC, you must open the CAN CONTROLLER SETUP block, and go to the
“Data File Support” tab in the dialog box that appears. (See Figure 4). There, manually update the path by clicking
“Replace Data File”, then navigating to, and selecting the file located in the …/dspace/lib_XXX subdirectory
created on their PC during the installation process. As of the R2018a dSPACE release, for the newly added DBC to
become the one being used, the user must use this same dialog box to select and remove all unwanted DBC files
from any previous firmware release package. This is done by using the “Remove Data File” button.

4 | P a g e

Figure 4. Setting the path to the CAN DBC file.

3.2. Throttle

The Throttle Interface block is shown in Figure 5, and its I/O is described in Table 1. This block packages pre-
configured dSPACE RTICAN blocks to transmit the Throttle Command CAN message 0x62, and receive the Throttle
Report CAN message 0x63.

5 | P a g e

Figure 5. Throttle_Interface block.

Figure 6. Throttle_CAN_Transmit block.

6 | P a g e

Figure 7. Throttle_CAN_Receive block.

7 | P a g e

Table 2. Throttle Interface Library block I/O.

 Port Name Data Type Range Description

Inputs Throttle_Cmd_Pedal_Posn double 0.15 — 0.8 Throttle pedal command, as a PWM duty

cycle.

Values outside the range will be saturated.

 Throttle_Cmd_Pct double 0.00 — 1.00 Throttle pedal command, normalized from

closed throttle to WOT.

Values outside the range will be saturated.

 Throttle_Cmd_Type uint8 — Enumeration to select which Throttle_Cmd to

use.
1: Throttle_Cmd_Pedal_Posn
2: Throttle_Cmd_Pct

 Throttle_DBW_Enable bool — Enable DBW throttle control.
TRUE: enable
FALSE: disable.

 Throttle_DBW_Override_Clear bool — Clear driver override.
TRUE: request clear of driver override
FALSE: normal operation.

 Throttle_DBW_Override_Ignore bool — Ignore future driver overrides
TRUE: ignore overrides
FALSE: normal operation

 Throttle_Watchdog_Counter uint8 0 — 255 Optional watchdog counter.
0: disables feature.

See datasheet (ThrottleBrakeDatasheet-

XXX.pdf) for details

Outputs Throttle_Report_Bus bus — Simulink bus containing the data in the

throttle report CAN message.

See datasheet (ThrottleBrakeDatasheet-

XXX.pdf) for details.

 Throttle_RX_Data_Valid bool — Flag indicating if data is being received over

the CAN network.

3.3. Brake

The Brake_Interface block is shown in Figure 8, and its I/O is described in Table 3. This block packages pre-
configured dSPACE RTICAN blocks to transmit the Brake Command CAN message 0x60, and receive the Brake
Report CAN message (ID = 0x61).

The Brake_CAN_Transmit and Brake_CAN_Receive subsystem blocks are shown in Figure 9 and Figure 10,
respectively.

8 | P a g e

Table 3. Brake Interface Library block I/O.

 Port Name Data

Type

Range Description

Inputs Brake_Cmd_Pedal_Posn double 0.15 — 0.5 Brake pedal command, as a PWM duty cycle.

Values outside the range will be saturated.

 Brake_Cmd_Pct_Max_Trq double 0.00 — 1.00 Brake pedal command, as normalized torque.

Values outside the range will be saturated.

 Brake_Cmd_Trq double 0 — 3412 Brake pedal command, as torque (Nm).

Values outside the range will be saturated.

 Brake_Cmd_CL_Trq_Req double 0 — 3412 Brake pedal command, as torque (Nm), closing the

loop on reported requested torque.

Values outside the range will be saturated.

 Brake_Cmd_Decel double 0 — 10 Brake pedal command, as desired deceleration

(m/s2).

 Brake_Cmd_Type unit8 1 —4 Enumeration to select which Brake_Pedal_Cmd to

use:
1: Brake_Cmd_Pedal_Posn
2: Brake_Cmd_Pct_Max_Trq

3: Brake_Cmd_Trq

4: Brake_Cmd_Trq_CL_Req

5: Brake_Cmd_Decel

 Brake_DBW_Enable bool — Enable DBW brake control.
TRUE: enable, FALSE: disable.

 Brake_DBW_Override_Clear bool — Clear driver override.
TRUE: request clear of driver override.
FALSE: normal operation.

 Brake_DBW_Override_Ignore bool — Ignore future driver overrides
TRUE: ignore overrides
FALSE: normal operation

 Reserved bool — Strictly for internal Dataspeed use.

 Brake_Watchdog_Counter uint8 0 — 255 Optional watchdog counter.
0: disables feature.

See datasheet (ThrottleBrakeDatasheet-XXX.pdf)
for details.

Outputs Brake_Report_Bus bus — Simulink bus containing the data in the Brake

Report CAN message.

See datasheet (ThrottleBrakeDatasheet-XXX.pdf)
for details.

 Brake_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

9 | P a g e

Figure 8. Brake_Interface block.

Figure 9. Brake_CAN_Transmit block.

10 | P a g e

.

Figure 10. Brake_CAN_Receive block.

3.4. Steering

The Steering_Interface block is shown in Figure 11, and its I/O is described in Table 4. This block packages pre-
configured dSPACE RTICAN blocks to transmit the Steering Command CAN message 0x64, and receive the Steering
Report CAN message 0x65.

The Steering_CAN_Transmit and Steering_CAN_Receive subsystem blocks are shown in Figure 12 and Figure 13,
respectively.

Figure 11. Steering_Interface block.

11 | P a g e

Figure 12. Steering_CAN_Transmit block.

Figure 13. Steering_CAN_Receive block.

12 | P a g e

Table 4. Steering_Interface library block I/O.

 Port Name Data

Type

Range Description

Inputs Steering_Cmd_Angle double -470 — 470 Steering wheel angle command (degrees).

Values outside the range will be saturated.

 Steering_Cmd_Torque double -5 – 5 Steering wheel torque command (Nm).

Values outside the range will be saturated.

 Steering_Cmd_Type double 1 — 2 Enumeration to select which Steering_Cmd_XXX to

use:
1: Steering_Cmd_Angle
2: Steering_Cmd_Torque

 Steering_Velocity 0 – 500 Maximum velocity in deg/sec to use while moving

steering wheel to desired angle.
Setting to zero will default to maximum of 500

deg/sec.

 Steering_DBW_Enable bool — Enable DBW steering control.
TRUE: enable
FALSE: disable.

 Steering_DBW_Override_Clear bool — Clear driver override.
TRUE: request clear of driver override.
FALSE: normal operation.

 Steering_DBW_Override_Ignore bool — Ignore future driver overrides
TRUE: ignore overrides
FALSE: normal operation

 Steering_Watchdog_Counter uint8 0 — 255 Optional watchdog counter.
0: disables feature.
See datasheet (SteeringShifterDatasheet-XXX.pdf)
for details.

Outputs Steering_Report_Bus bus — Simulink bus containing the data in the Steering

Report CAN message.
See datasheet (SteeringShifterDatasheet-XXX.pdf)
for details.

 Steering_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

3.5. Shifter

The Shifter_Interface block is shown in Figure 14, and its I/O is described in Table 5. This block packages pre-
configured dSPACE RTICAN blocks to transmit the Gear Command CAN message 0x66 and receive the Gear Report
CAN message 0x67.

13 | P a g e

The Gear_CAN_Transmit and Gear_CAN_Receive subsystem blocks are shown in Figure 15 and Figure 16,
respectively.

The transmit block does the following:

• Passes the gear command into the GCMD field of the gear command CAN message.

• Passes the clear signal to the CLEAR bit of the gear command CAN message.

• If the gear command is equal to zero, the hardware module will ignore the command.

• If the command is between 1 and 5, then the corresponding gear is selected.

The receive block does the following:

• Parses the gear report message and combines the received data into a Simulink bus.

• The CAN_RX_Data_Valid flag is used to indicate if the report message is being received.

Figure 14. Shifter_Interface block.

Figure 15. Gear_CAN_Transmit block.

14 | P a g e

Figure 16. Gear_CAN_Receive block.

Table 5. Shifter_Interface library block I/0.

 Port Name Data Type Range Description

Inputs Gear_Cmd uint8 0 — 5 Enumeration of desired shifter position.
0: None
1 — 5: P, R, N, D, L, respectively.

 Clear bool — Clear driver override.
TRUE: request clear of driver override.
FALSE: normal operation.

Outputs Gear_Report_Bus bus — Simulink bus containing the data in the gear report

CAN message.
See datasheet (SteeringShifterDatasheet-XXX.pdf)
for details.

 Gear_RX_Data_Valid bool — Flag indicating if data is being received over the CAN

network.

3.6. Turn Signal

The Turn_Signal_Interface block is shown in Figure 17, and its I/O is described in Table 6. This block packages a
pre-configured dSPACE RTICAN block to transmit the Turn Signal Command CAN message 0x68. The Turn Signal
Report status can be accessed in the Misc_CAN_Receive block. See Section Error! Reference source not found. for d
etails.

The Signal_CAN_Transmit block is shown in Figure 18.

The transmit block does the following:

• Passes the turn signal command into the TRNCMD field of the turn signal command CAN message.

• If the command is 0, all signals turn off.

• If the command is 1, the left signal turns on.

15 | P a g e

• If the command is 2, the right signal turns on.

Figure 17. Turn_Signal_Interface block

Figure 18. Signal_CAN_Transmit block

Table 6. Turn_Signal_Interface library block I/O.

 Port Name Data Type Range Description

Inputs Signal_Cmd uint8 0 — 2 Enumeration of desired shifter position.
0: None
1: Left
2: Right

16 | P a g e

4. Vehicle Data Blocks

The ADAS Kit reads data that is available on select vehicle CAN networks, and repackages and transmits that data
on the Dataspeed DBW CAN bus.

The vehicle data includes:

• Acceleration – Longitudinal, lateral and vertical acceleration measurements in m/s2.

• Brake Info Report – Miscellaneous data containing turn signal, wiper, and high-beam status, as well as the
state of many of the buttons on the steering wheel.

• Fuel Level – Vehicle fuel level as a percentage of Full.

• GPS – Latitude/longitude, date/time, altitude, heading, speed, etc.

• Gyro – Vehicle roll and yaw rate measurements in rad/s.

• Miscellaneous Data – Miscellaneous data containing turn signal, wiper, and high-beam status, as well as
the state of many of the buttons on the steering wheel.

• Tire Pressure – Pressures of the individual tires.

• Wheel Speed – The four individual wheel speed measurements in rad/s.

Blocks used to access the re-transmitted data are provided in the vehicle_data_blocks.slx library, which is shown
in Figure 19. This library can also be opened from the main drive_by_wire_master.slx library.

Figure 19. Vehicle Data Library.

17 | P a g e

4.1. Acceleration

The Accel_CAN_Receive block is shown in Figure 20, and its I/O is described in Table 7. CAN message ID 0x6B.

Figure 20. Accel_CAN_Receive block.

Table 7: Accel_CAN_Receive library block I/O.

 Port Name Data Type Range Description

Outputs Accel_Bus bus — Simulink bus containing the longitudinal, lateral

and vertical acceleration in m/s2.

 Accel_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

18 | P a g e

4.2. BrakeInfo Report Data

The BrakeInfo_Report_CAN_Receive block is shown in Figure 21, and its I/O is described in Table 8. CAN message
ID 0x74.

Figure 21. BrakeInfo_Report_CAN_Receive block.

Table 8: Port I/O of the BrakeInfo_CAN_Receive library block.

 Port Name Data Type Range Description

Outputs BrakeInfo_Report_Bus bus — Simulink bus containing the information in the

BrakeInfo_Report CAN message (ID = 0x74).

See the Steering-Shifter module datasheet for

details (SteeringShifterDatasheet-XXX.pdf).

 BrakeInfo_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

19 | P a g e

4.3. Fuel Level

The Fuel_Level_CAN_Receive block is shown in Figure 22, and its I/O is described in Table 9. CAN message ID
0x72.

Figure 22. Fuel_Level_CAN_Receive block.

Table 9. Fuel level data library block I/O.

 Port Name Data Type Range Description

Outputs FuelLevel_Bus double 0 — 100 Simulink bus containing fuel level, battery

voltages, and odometer.
See datasheet (SteeringShifterDatasheet-

XXX.pdf) for details.

 FuelLevel_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

20 | P a g e

4.4. GPS

The GPS_CAN_Receive block is shown in Figure 23, and its I/O is described in Table 10. CAN message ID’s 0cx6D,
0cx6E and 0cx6F.

Figure 23. GPS_CAN_Receive block.

 Table 10. GPS_CAN_Receive library block I/O.

 Port Name Data Type Range Description

Outputs GPS_Data_1 bus — Simulink bus containing latitude and longitude data.
See datasheet (SteeringShifterDatasheet-XXX.pdf)
for details.

 GPS_RX_Data_Valid_1 bool — Flag indicating if data is being received over the CAN

network.

 GPS_Data_2 bus — Simulink bus containing GPS time stamp.
See datasheet (SteeringShifterDatasheet-XXX.pdf)
for details.

 GPS_RX_Data_Valid_2 bool — Flag indicating if data is being received over the CAN

network.

 GPS_Data_3 bus — Simulink bus containing altitude, heading, speed, and

DOP values.
See datasheet (SteeringShifterDatasheet-XXX.pdf)
for details.

 GPS_RX_Data_Valid_3 bool — Flag indicating if data is being received over the CAN

network.

21 | P a g e

4.5. Gyro

The Gyro_CAN_Receive block is shown in Figure 24, and its I/O is described in Table 11. CAN message ID 0x6C.

Figure 24. Gyro_CAN_Receive block.

Table 11. Gyro_CAN_Receive library block I/O.

 Port Name Data Type Range Description

Outputs Gyro_Bus bus — Simulink bus containing the vehicle roll and yaw

rates in rad/s.

 Gyro_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

22 | P a g e

4.6. Miscellaneous Data

The Misc_CAN_Receive block is shown in Figure 25, and its I/O is described in Table 12. CAN message ID 0x69.

Table 12: Misc_CAN_Receive library block I/O.

 Port Name Data Type Range Description

Outputs Misc_Report_Bus bus — Simulink bus containing the information in the

Miscellaneous Report CAN message (ID = 0x69).

See the Steering-Shifter module datasheet for

details (SteeringShifterDatasheet-XXX.pdf).

 Misc_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

Figure 25. Misc_CAN_Receive block.

23 | P a g e

4.7. ThrottleInfo Report Data

The ThrottleInfo_Report_CAN_Receive block is shown in Figure 26, and its I/O is described in Table 13. CAN
message ID 0x75.

Figure 26. ThrottleInfo_Report_CAN_Receive block.

Table 13: Port I/O of the ThrottleInfo_CAN_Receive library block.

 Port Name Data Type Range Description

Outputs Engine_RPM double — Engine speed (RPM).

 Accelerator_Pedal_Pct double 0—99.9 Reported accelerator pedal position, in percent.

 Accelerator_Pedal_Rate double -5.12—5.08 Reported accelerator pedal rate, in %/ms.

24 | P a g e

4.8. Tire Pressure

The Tire_Pressure_CAN_Receive block is shown in Figure 27, and its I/O is described in Table 14. CAN message ID
0x71.

Figure 27. Tire_Pressure_CAN_Receive block.

Table 14. Tire_Pressure_CAN_Receive library block I/O.

 Port Name Data Type Range Description

Outputs Tire_Pressure_Bus bus 0 — 65535 Simulink bus containing tire pressure for each

tire in kPa.

 Tire_Pressure_RX_Data_Valid bool — Flag indicating if data is being received over

the CAN network.

25 | P a g e

4.9. Wheel Speed

The Wheel_Speed_CAN_Receive block is shown in Figure 28, and its I/O is described in Table 15. CAN message ID
0x6A.

Figure 28. Wheel_Speed_CAN_Receive block.

Table 15. Wheel_Speed_CAN_Receive library block I/O.

 Port Name Data Type Range Description

Outputs Wheel_Speed_Bus bus — Simulink bus containing the four individual

wheel speeds in rad/s.

 Wheel_Speed_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

5. ADAS Kit Info Blocks

These library blocks de-multiplex and bundle like data pertaining to the ADAS Kit itself, into the following Simulink
buses:

• Firmware Version (one bus each for Brake, Throttle and Steering/Shift)
• License General Info
• MAC Address
• Build Date
• VIN (Vehicle Identification Number)
• Software Features (one bus for each feature)

They also provide these scalars:

• Platform
• Firmware Version Data Valid
• License Manager Data Valid

26 | P a g e

Figure 29. ADAS Kit License Info Library.

5.1. ADAS Kit Firmware Version

The ADAS_Kit_Firmware_Version block is shown in Figure 30, and its output is described in Table 6. CAN message
ID 0x7F.

27 | P a g e

Figure 30. ADAS_Kit_Firmware_Version block.

Table 16. ADAS_Kit_Firmware_Version library block I/O.

 Port Name Data Type Range Description

Outputs Firmware_Ver_Brake_Bus — — Simulink bus containing firmware version
information for the brake module.

 Firmware_Ver_Throttle_Bus — — Simulink bus containing firmware version
information for the throttle module.

 Firmware_Ver_SteerShift_Bus — — Simulink bus containing firmware version
information for the steer/shift module.

 Platform uint8 — Vehicle platform.
0 = Ford CD4
1 – 255 = not yet assigned

 Firmware_Version_Rx_Data_Valid bool — Flag indicating if data is being received over
the CAN network.

5.2. ADAS Kit License Info

The ADAS_Kit_License_Info block is shown in Figure 31, and its I/O is described in Table 17. Details of each bus
are shown in Figure 32 through Figure 36. CAN message ID 0x7E.

28 | P a g e

Figure 31. ADAS_Kit_License_Info block.

Figure 32. License_General_Info bus.

Figure 33. MAC bus.

29 | P a g e

Figure 34. Build_Date bus.

30 | P a g e

Figure 35. VIN bus.

Figure 36. Feature_Base bus.

31 | P a g e

Table 18. Port I/O of the ADAS_Kit_License_Info library block.

 Port Name Data Type Range Description

Outputs License_General_Info_Bus bus — Simulink bus containing bit flags indicating if

the overall data for this block has yet been

updated, if this is a trial license, and if the

license has expired.

 MAC_Bus bus —

Simulink bus containing the MAC address of the

Kit. MAC0 is the first (leftmost) field in the

address. MAC5 is the last.

 Build_Date_Bus bus —

Simulink bus containing the build date of the
kit's firmware. (Format: YYYY / MM / DD).

 VIN_Bus bus —

Simulink bus containing the VIN. VIN0 is the

first (leftmost) character in the address. VIN16

is the last.

 Feature_Base_Bus bus —

Simulink bus providing licensing status
information for the software feature called
"Base". It contains bit flags reporting if this
feature is enabled, and if it is a trial. For trials,
it reports the number of trials used and the
number remaining.

 License_Manager_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

6. Vehicle Control Blocks

These blocks can be found in the vehicle_control_blocks.slx library, which can be opened from the main library.

The library is shown in Figure 37. The control blocks assist the user in getting a functioning system up and running
quickly.

These blocks are:

• The DBW_System_Enable_Logic block allows the use of steering wheel buttons to enable and disable the
DBW and application level systems.

• The ULC_Interface block provides the I/O access required to run the Universal Lat/Long Controller. These
algorithms provide advanced speed and steering control for this vehicle. They are documented in
ULC_UserGuide-RevXXX.pdf.

32 | P a g e

Figure 37. Individual Control Blocks library.

6.1. System Enable Logic Block

This block provides a method of using the steering wheel buttons that are available in the Misc_Report_Bus
message to enable and disable the DBW control. This block is shown in Figure 38, and its I/O is summarized in
Table 19 .

The system enable logic block does the following:

• Waits for the DBW_Enable_Button input to go high, which then triggers the DBW_Override_Clear output
high to request clearing of the driver override states of each DBW module.

• Waits until the DBW_Driver_Override input signal goes low, indicating that all driver override signals have
been cleared. Once this happens, the DBW_System_Enable signal is set high to indicate that DBW control
is ready.

• Listens for either the DBW_Disable_Button input or the DBW_Driver_Override input to go high,
indicating that the driver pressed the disable button or intervened with control of the steering wheel,
pedals, or shifter. In this case, the DBW_System_Enable output is set low to indicate that the driver has
disabled the system.

• The DBW_Driver_Override input should be the logical OR of all the individual override bits received from
the CAN report messages from each DBW module.

• The DBW_Override_Clear output should be connected to all the CLEAR inputs on each DBW interface
block to appropriately clear any driver overrides when the enable button is pressed.

33 | P a g e

• The DBW_System_Enable output is intended to be used within the application model as an indicator of
whether DBW system control is enabled.

See the joystick_teleop.slx demo model to see how this block can be used in an application-level system (Section
7).

Figure 38. DBW_System_Enable_Logic block.

Table 20. DBW_System_Enable_Logic library block I/O.

 Port Name Data Type Range Description

Inputs DBW_Enable_Buttton bool — Boolean signal that upon going high will clear

driver overrides and enable the DBW system.

 DBW_Disable_Button bool — Boolean signal that will disable the DBW system

upon going high.

 DBW_Driver_Override bool — Boolean status of the driver override conditions.
This should be the logical OR of all override

signals from each individual DBW interface.

Outputs DBW_System_Enable bool — Signal to indicate that DBW control is ready.

Intended for use within the model to control

program operation.

 DBW_Override_Clear bool — Should be routed to each CLEAR input of the

separate DBW interfaces.

34 | P a g e

6.2. Universal Lat/Long Controller (ULC)

The ULC consists of advanced algorithms to control the speed and direction of the vehicle. They are
embedded in the ADAS Kit itself. The ULC is thoroughly documented in ULC_UserGuide-RevXXX.pdf which is
in the Documentation/System folder in the firmware release package for the ADAS Kit. The Simulink interface
provided by this library blockset is shown in Figure 39 and Figure 40.

Figure 39. Interface blocks to the ULC Command and ULC Config CAN messages.

35 | P a g e

Figure 40. Interface block to the ULC Report CAN message.

7. Joystick Teleop Demo Model

This Simulink model shows the user how to assemble the individual blocks in this overall library, to create a
system that provides by-wire control of the vehicle.

