

Dataspeed Drive-By-Wire

dSPACE/Simulink Interface Blockset

User Manual

Documentation of the dSPACE Simulink blocks that interface
with the Dataspeed combination drive-by-wire module.

Author and Point of Contact:
Micho Radovnikovich

(mradovnikovich@dataspeedinc.com)

mailto:mradovnikovich@dataspeedinc.com

Contents
1. Introduction .. 4

2. Software Installation .. 6

3. Drive-by-Wire Interface Blocks .. 6

3.1. Throttle ... 7

3.2. Brake ... 10

3.3. Steering ... 13

3.4. Shifter ... 16

3.5. Turn Signal .. 18

3.6. Complete Interface ... 19

4. Vehicle Data Blocks .. 20

4.1. Wheel Speed ... 21

4.2. Gyro .. 22

4.3. Acceleration .. 23

4.4. Fuel Level .. 23

4.5. Tire Pressure ... 24

4.6. GPS .. 25

4.7. Miscellaneous Data .. 26

4.8. BrakeInfo Report Data ... 27

5. ADAS Kit Info Blocks ... 29

5.1. ADAS Kit Firmware Version .. 29

5.2. ADAS Kit License Info ... 30

6. Control Blocks ... 34

6.1. System Enable Logic Block ... 35

6.2. Acceleration Control .. 36

6.3. Speed and Steering Control ... 37

7. Demo Models ... 40

1. Introduction

This document describes the dSPACE Simulink blockset designed to communicate with the Dataspeed combination
Drive-By-Wire (DBW) hardware modules over CAN. For more details regarding the specific CAN messaging
interface to the DBW hardware modules, please refer to the individual product datasheets
(ThrottleBrakeDatasheet-RevA09.pdf, SteeringShifterDatasheet-RevA12.pdf).

The main Simulink library dataspeed_drive_by_wire.slx is shown in Figure 1. This library has the following
components:

 CAN Configuration – A pre-configured block that properly sets up the dSPACE RTICAN interface to send
messages to the Dataspeed DBW modules. All the dSPACE RTICAN blocks are pre-configured to use the
DataspeedByWire.dbc file to automatically configure the message structure.

IMPORTANT: When the CAN configuration block is placed in a new model, be sure to add the .dbc file
under the Data File Support tab. This is necessary for the correct path to the .dbc file to be set. The .dbc
file can be found in the lib folder in the Dataspeed DBW release package.

 Complete Interface Block – This block contains all DBW subsystems and provides the required inputs and
outputs to interface to the subsystems.

 Links to Individual Subsystems – These blocks simply open other Simulink libraries that contain individual
blocks for each DBW subsystem, and each individual vehicle data subsystem.

 Control Blocks – These blocks provide basic control functionality.

 Demo Models – Models that demonstrate the usage of the DBW interface blocks, and provide baselines
from which to expand.

Double-clicking the square boxes next to each model name will open a dialog box, shown in Figure 2.

The options are:

̶ Open – Open the demo model at its default location. It is not recommended to modify the model in
this case.

̶ Copy – This option copies the demo model into the current MATLAB working directory. Making
changes to this copy won’t affect the original demo model.

Figure 1. Main Simulink library.

Figure 2. Demo Models dialog box.

2. Software Installation

The process of installing the DBW Simulink blockset into MATLAB is as follows.

1. Using File Explorer, copy the root DBW folder onto you your hard drive in the place of your choosing.

2. Open MATLAB, and change MATLAB’S present working directory to be this newly added folder.

3. At the MATLAB Command Line, type “install” to run the DBW Blockset installation M-file script.

4. When prompted, simply hit “Enter” on your keyboard.

5. The installation script will add all of the appropriate DBW Simulink blockset folders to your MATLAB path.

3. Drive-by-Wire Interface Blocks

This section describes the individual DBW interface blocks. These individual blocks can be found in the
drive_by_wire_blocks.slx library, which can be opened from the main library. They are shown in Figure 3.

Figure 3. Drive-By-Wire Interface Blockset.

3.1. Throttle

The Throttle Interface block is shown in Figure 4 and Figure 5, and its I/O is described in Table 1. This block
packages pre-configured dSPACE RTICAN blocks to transmit the throttle command CAN message (ID = 0x62), and
receive the throttle report CAN message (ID = 0x63).

The Throttle_CAN_Transmit and Throttle_CAN_Receive subsystem blocks are shown in Figure 6 and Figure 7,
respectively.

The transmit block does the following:

 Passes the pedal command into the PCMD field of the throttle command CAN message.

 Passes the enable signal to the EN bit of the CAN message.

 Passes the clear signal to the CLEAR bit of the CAN message.

 Passes the ignore signal to the IGNORE bit of the CAN message.

The receive block does the following:

 Parses the throttle report message and combines the received data into a Simulink bus.

 The Throttle_RX_Data_Valid flag is used to indicate if the report message is being received.

Figure 4. Throttle_Interface block.

Figure 5. Throttle_Interface block.

Figure 6. Throttle_CAN_Transmit block.

Figure 7. Throttle_CAN_Receive block.

Table 1. Port I/O of the Throttle Interface Library block.

 Port Name Data Type Range Description

Inputs Throttle_Pedal_Cmd double 0.15 —

0.8

PWM duty cycle for the throttle pedal.

Values outside the range will be saturated.

 Throttle_DBW_Enable bool — Enable DBW throttle control.
TRUE: enable
FALSE: disable.

 Throttle_DBW_Clear bool — Clear driver override.
TRUE: request clear of driver override
FALSE: normal operation.

 Throttle_DBW_Override_Ignore bool — Ignore future driver overrides
TRUE: ignore overrides
FALSE: normal operation

 Throttle_Watchdog_Counter uint8 0 — 255 Optional watchdog counter.
0: disables feature.
See datasheet (ThrottleBrakeDatasheet-

RevA09.pdf) for details

Outputs Throttle_Report_Bus bus — Simulink bus containing the data in the

throttle report CAN message.

See datasheet (ThrottleBrakeDatasheet-

RevA09.pdf) for details.

 Throttle_RX_Data_Valid bool — Flag indicating if data is being received over

the CAN network.

3.2. Brake

The Brake_Interface block is shown in Figure 8, and its I/O is described in Table 2. This block packages pre-
configured dSPACE RTICAN blocks to transmit the brake command CAN message (ID = 0x60), and receive the brake
report CAN message (ID = 0x61). Additionally, this block implements logic to control the BOO signal based on user
preferences.

The Brake_CAN_Transmit and Brake_CAN_Receive subsystem blocks are shown in Figure 9 and Figure 10,
respectively.

The transmit block does the following:

 Passes the pedal command into the PCMD field of the CAN message.

 Passes the enable signal into the EN bit of the CAN message.

 Passes the clear signal to the CLEAR bit of the CAN message.

 If BOO_Command is high, it overrides the pedal position logic and sets the BCMD bit to high in the CAN
message.

 If BOO_Thres is less than the minimum pedal position command of 0.15, then the BCMD bit is set to high
when the pedal command becomes higher than the default value of 0.2.

 If BOO_Thres is higher than 0.15, the BCMD bit is set to high when the pedal command becomes higher
than the specified threshold.

The receive block does the following:

 Parses the brake report message and combines the received data into a Simulink bus.

 The Brake_RX_Data_Valid flag is used to indicate if the report message is being received.

Table 2. Port I/O of the Brake Interface Library block.

 Port Name Data

Type

Range Description

Inputs Brake_Pedal_Cmd double 0.15 — 0.5 PWM duty cycle for the throttle pedal.

Values outside the range will be saturated.

 Brake_BOO_Cmd bool — Flag to directly control the BOO signal.
TRUE: force BOO high,
FALSE: allow automatic BOO control based on pedal

position.

 Brake_BOO_Thres bool 0 — 0.5 Used to override the default BOO pedal position

threshold of 0.2.
≤ 0.15: use default threshold of 0.2.
> 0.15: replace threshold.

 Brake_DBW_Enable bool — Enable DBW brake control.
TRUE: enable, FALSE: disable.

 Brake_DBW_Override_Clear bool — Clear driver override.
TRUE: request clear of driver override.
FALSE: normal operation.

 Brake_DBW_Override_Ignore bool — Ignore future driver overrides
TRUE: ignore overrides
FALSE: normal operation

 Brake_Watchdog_Counter uint8 0 — 255 Optional watchdog counter.
0: disables feature.
See datasheet (ThrottleBrakeDatasheet-

RevA09.pdf) for details

Outputs Brake_Report_Bus bus — Simulink bus containing the data in the brake report

CAN message.

See datasheet (ThrottleBrakeDatasheet-

RevA09.pdf) for details.

 Brake_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

Figure 8. Brake_Interface block.

Figure 9. Brake_CAN_Transmit block.

.

Figure 10. Brake_CAN_Receive block.

3.3. Steering

The Steering_Interface block is shown in Figure 11, and its I/O is described in Table 3. This block packages pre-
configured dSPACE RTICAN blocks to transmit the steering command CAN message (ID = 0x64), and receive the
steering report CAN message (ID = 0x65).

The Steering_CAN_Transmit and Steering_CAN_Receive subsystem blocks are shown in Figure 12 and Figure 13,
respectively.

The transmit block does the following:

 Passes the steering command into the SCMD field of the steering command CAN message.

 Passes the enable signal into EN bit of the CAN message.

 Passes the clear signal to the CLEAR bit of the CAN message.

 Passes the steering velocity command into the SVEL field of the CAN message.

The receive block does the following:

 Parses the steering report message and combines the received data into a Simulink bus.

 The Steering_RX_Data_Valid flag is used to indicate if the report message is being received.

Figure 11. Steering_Interface block.

Figure 12. Steering_CAN_Transmit block.

Figure 13. Steering_CAN_Receive block.

Table 3. Port I/O of the Steering_Interface library block.

 Port Name Data

Type

Range Description

Inputs Steering_Cmd double -470 — 470 Steering wheel angle command in degrees.

Values outside the range will be saturated.

 Steering_Velocity 0 – 500 Maximum velocity in deg/sec to use while moving

steering wheel to desired angle.
Setting to zero will default to maximum of 500

deg/sec.

 Steering_DBW_Enable bool — Enable DBW steering control.
TRUE: enable
FALSE: disable.

 Steering_DBW_Override_Clear bool — Clear driver override.
TRUE: request clear of driver override.
FALSE: normal operation.

 Steering_DBW_Override_Ignore bool — Ignore future driver overrides
TRUE: ignore overrides
FALSE: normal operation

 Steering_Watchdog_Counter uint8 0 — 255 Optional watchdog counter.
0: disables feature.
See datasheet (SteeringShifterDatasheet-

RevA12.pdf) for details.

Outputs Steering_Report_Bus bus — Simulink bus containing the data in the steering

report CAN message.
See datasheet (SteeringShifterDatasheet-

RevA12.pdf) for details.

 Steering_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

3.4. Shifter

The Shifter_Interface block is shown in Figure 14, and its I/O is described in Table 4. This block packages pre-
configured dSPACE RTICAN blocks to transmit the gear command CAN message (ID = 0x66), and receive the gear
report CAN message (ID = 0x67).

The Gear_CAN_Transmit and Gear_CAN_Receive subsystem blocks are shown in Figure 15 and Figure 16,
respectively.

The transmit block does the following:

 Passes the gear command into the GCMD filed of the gear command CAN message.

 Passes the clear signal to the CLEAR bit of the gear command CAN message.

 If the gear command is equal to zero, the hardware module will ignore the command.

 If the command is between 1 and 5, then the corresponding gear is selected.

The receive block does the following:

 Parses the gear report message and combines the received data into a Simulink bus.

 The CAN_RX_Data_Valid flag is used to indicate if the report message is being received.

Figure 14. Shifter_Interface block.

Figure 15. Gear_CAN_Transmit block.

Figure 16. Gear_CAN_Receive block.

Table 4. Port I/O of the Shifter_Interface library block.

 Port Name Data Type Range Description

Inputs Gear_Cmd uint8 0 — 5 Enumeration of desired shifter position.
0: None
1 — 5: P, R, N, D, L

 Clear bool — Clear driver override.
TRUE: request clear of driver override.
FALSE: normal operation.

Outputs Report bus — Simulink bus containing the data in the gear report

CAN message.
See datasheet (SteeringShifterDatasheet-

RevA12.pdf) for details.

 Gear_RX_Data_Valid bool — Flag indicating if data is being received over the CAN

network.

3.5. Turn Signal

The Turn_Signal_Interface block is shown in Figure 17, and its I/O is described in Table 5. This block packages a
pre-configured dSPACE RTICAN block to transmit the turn signal command CAN message (ID = 0x68). The turn
signal report status can be accessed in the Misc_CAN_Receive block. See Section 4.7 for details.

The Signal_CAN_Transmit block is shown in Figure 18.

The transmit block does the following:

 Passes the turn signal command into the TRNCMD field of the turn signal command CAN message.

 If the command is 0, all signals turn off.

 If the command is 1, the left signal turns on.

 If the command is 2, the right signal turns on.

Figure 17. Turn_Signal_Interface block

Figure 18. Signal_CAN_Transmit block

Table 5. Port I/O of the Turn_Signal_Interface library block.

 Port Name Data Type Range Description

Inputs Signal_Cmd uint8 0 — 2 Enumeration of desired shifter position.
0: None
1: Left
2: Right

3.6. Complete Interface

In the main library, a block is provided that contains all of the individual subsystem interfaces, as shown in Figure
19 and Figure 20.

Figure 19. Complete Drive_By_Wire_Interface block.

Figure 20. Complete Drive_By_Wire_Interface block (internals).

4. Vehicle Data Blocks

The DBW hardware module listens to data that is available on the main vehicle CAN networks, and re-transmits the
data on the DBW CAN network.

The vehicle data that is re-transmitted includes:

 Wheel Speed – The four individual wheel speed measurements in rad/s.

 Gyro – The roll and yaw rate measurements in rad/s.

 Acceleration – Longitudinal, lateral and vertical acceleration measurements in m/s2.

 Misc Data – Miscellaneous data containing turn signal, wiper, and high-beam status, as well as the state
of many of the buttons on the steering wheel.

Blocks to access the re-transmitted data are provided in the vehicle_data_blocks.slx library, which is shown in
Figure 21. This library can also be opened from the main dataspeed_drive_by_wire.slx library.

Figure 21. Vehicle Data Library.

4.1. Wheel Speed

The Wheel_Speed_CAN_Receive block is shown in Figure 22, and its I/O is described in Table 6.

Figure 22. Wheel_Speed_CAN_Receive block.

Table 6. Port I/O of the Wheel_Speed_CAN_Receive library block.

 Port Name Data Type Range Description

Outputs Wheel_Speed_Bus bus — Simulink bus containing the four individual

wheel speeds in rad/s.

 Wheel_Speed_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

4.2. Gyro

The Gyro_CAN_Receive block is shown in Figure 23, and its I/O is described in Table 7.

Figure 23. Gyro_CAN_Receive block.

Table 7. Port I/O of the Gyro_CAN_Receive library block.

 Port Name Data Type Range Description

Outputs Gyro_Bus bus — Simulink bus containing the vehicle roll and yaw

rates in rad/s.

 Gyro_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

4.3. Acceleration

The Accel_CAN_Receive block is shown in Figure 24, and its I/O is described in Table 8.

Figure 24. Accel_CAN_Receive block.

Table 8: Port I/O of the Accel_CAN_Receive library block.

 Port Name Data Type Range Description

Outputs Accel_Bus bus — Simulink bus containing the longitudinal, lateral

and vertical acceleration in m/s2.

 Accel_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

4.4. Fuel Level

The Fuel_Level_CAN_Receive block is shown in Figure 25, and its I/O is described in Table 9.

Figure 25. Fuel_Level_CAN_Receive block.

Table 9. Port I/O of the fuel level data library block.

 Port Name Data Type Range Description

Outputs Fuel_Level double 0 — 100 Current fuel level percentage.

 Fuel_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

4.5. Tire Pressure

The Tire_Pressure_CAN_Receive block is shown in Figure 26, and its I/O is described in Table 10.

Figure 26. Tire_Pressure_CAN_Receive block.

Table 10. Port I/O of the Tire_Pressure_CAN_Receive library block.

 Port Name Data Type Range Description

Outputs Tire_Pressure_Bus bus 0 — 65535 Simulink bus containing tire pressure for each

tire in kPa.

 Tire_Pressure_RX_Data_Valid bool — Flag indicating if data is being received over

the CAN network.

4.6. GPS

The GPS_CAN_Receive block is shown in Figure 27, and its I/O is described in Table 11

Figure 27. GPS_CAN_Receive block.

Table 11. Port I/O of the GPS_CAN_Receive library block.

 Port Name Data Type Range Description

Outputs GPS_Data_1 bus — Simulink bus containing latitude and longitude data.
See datasheet (SteeringShifterDatasheet-

RevA12.pdf) for details.

 GPS_RX_Data_Valid_1 bool — Flag indicating if data is being received over the CAN

network.

 GPS_Data_2 bus — Simulink bus containing GPS time stamp.
See datasheet (SteeringShifterDatasheet-

RevA12.pdf) for details.

 GPS_RX_Data_Valid_2 bool — Flag indicating if data is being received over the CAN

network.

 GPS_Data_3 bus — Simulink bus containing altitude, heading, speed, and

DOP values.
See datasheet (SteeringShifterDatasheet-

RevA12.pdf) for details.

 GPS_RX_Data_Valid_3 bool — Flag indicating if data is being received over the CAN

network.

4.7. Miscellaneous Data

The Misc_CAN_Receive block is shown in Figure 28, and its I/O is described in Table 12.

Table 12: Port I/O of the Misc_CAN_Receive library block.

 Port Name Data Type Range Description

Outputs Misc_Report_Bus bus — Simulink bus containing the information in the

Miscellaneous Report CAN message (ID = 0x69).

See the Steering-Shifter module datasheet for

details (SteeringShifterDatasheet-RevA12.pdf).

 Misc_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

Figure 28. Misc_CAN_Receive block.

4.8. BrakeInfo Report Data

The BrakeInfo_Report_CAN_Receive block is shown in Figure 29, and its I/O is described in Table 13.

Figure 29. BrakeInfo_Report_CAN_Receive block.

Table 13: Port I/O of the BrakeInfo_CAN_Receive library block.

 Port Name Data Type Range Description

Outputs BrakeInfo_Report_Bus bus — Simulink bus containing the information in the

Miscellaneous Report CAN message (ID = 0x69).

See the Steering-Shifter module datasheet for

details (SteeringShifterDatasheet-RevA12.pdf).

 BrakeInfo_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

5. ADAS Kit Info Blocks

These library blocks de-multiplex and bundle like data pertaining to the ADAS Kit itself, into the following Simulink
buses:

 Firmware Version (one bus each for Brake, Throttle and Steering/Shift)
 License General Info
 MAC Address
 Build Date
 VIN (Vehicle Identification Number)
 Software Features (one bus for each feature)

Figure 30. ADAS Kit License Info Library.

5.1. ADAS Kit Firmware Version

The ADAS_Kit_Firmware_Version block is shown in Figure 31, and its output is described in Table 6.

Figure 31. ADAS_Kit_Firmware_Version block.

Table 14. Port I/O of the ADAS_Kit_Firmware_Version library block.

 Port Name Data Type Range Description

Outputs Firmware_Ver_Brake_Bus — — Simulink bus containing firmware version
information for the brake module.

 Firmware_Ver_Throttle_Bus — — Simulink bus containing firmware version
information for the throttle module.

 Firmware_Ver_SteerShift_Bus — — Simulink bus containing firmware version
information for the steer/shift module.

 Firmware_Version_Rx_Data_Valid bool — Flag indicating if data is being received over
the CAN network.

5.2. ADAS Kit License Info

The ADAS_Kit_License_Info block is shown in Figure 32, and its I/O is described in Table 15. Details of each bus
are shown in Figure 33 through Figure 37.

Figure 32. ADAS_Kit_License_Info block.

Figure 33. License_General_Info bus.

Figure 34. MAC bus.

Figure 35. Build_Date bus.

Figure 36. VIN bus.

Figure 37. Feature_Base bus.

Table 16. Port I/O of the ADAS_Kit_License_Info library block.

 Port Name Data Type Range Description

Outputs License_General_Info_Bus bus — Simulink bus containing bit flags indicating if

the overall data for this block has yet been

updated, if this is a trial license, and if the

license has expired.

 MAC_Bus bus —

Simulink bus containing the MAC address of the

Kit. MAC0 is the first (leftmost) field in the

address. MAC5 is the last.

 Build_Date_Bus bus —

Simulink bus containing the build date of the
kit's firmware. (Format: YYYY / MM / DD).

 VIN_Bus bus —

Simulink bus containing the VIN. VIN0 is the

first (leftmost) character in the address. VIN16

is the last.

 Feature_Base_Bus bus —

Simulink bus providing licensing status
information for the software feature called
"Base". It contains bit flags reporting if this
feature is enabled, and if it is a trial. For trials,
it reports the number of trials used and the
number remaining.

 License_Manager_RX_Data_Valid bool — Flag indicating if data is being received over the

CAN network.

6. Control Blocks

These blocks can be found in the control_blocks.slx library, which can be opened from the main library.

The library is shown in Figure 38. The control blocks assist the user in getting a functioning system up and running
quickly.

These blocks are:

 The DBW_System_Enable_Logic block allows the use of steering wheel buttons to enable and disable the
DBW and application level systems.

 The Accel_Control block provides a closed-loop acceleration control system that actuates the throttle and
brake to achieve a target acceleration.

 The Speed_And_Steering_Control block provides a closed-loop speed controller that outputs a desired
acceleration control.

Figure 38. Individual Control Blocks library.

6.1. System Enable Logic Block

This block provides a method of using the steering wheel buttons that are available in the Misc_Report_Bus
message (Section 4.7) to enable and disable the DBW control. This block is shown in Figure 39, and its I/O is
summarized in Table 17.

The system enable logic block does the following:

 Waits for the DBW_Enable_Button input to go high, which then triggers the DBW_Override_Clear output
high to request clearing of the driver override states of each DBW module.

 Waits until the DBW_Driver_Override input signal goes low, indicating that all driver override signals have
been cleared. Once this happens, the DBW_System_Enable signal is set high to indicate that DBW control
is ready.

 Listens for either the DBW_Disable_Button input or the DBW_Driver_Override input to go high,
indicating that the driver pressed the disable button or intervened with control of the steering wheel,
pedals, or shifter. In this case, the DBW_System_Enable output is set low to indicate that the driver has
disabled the system.

 The DBW_Driver_Override input should be the logical OR of all the individual override bits received from
the CAN report messages from each DBW module.

 The DBW_Override_Clear output should be connected to all the CLEAR inputs on each DBW interface
block to appropriately clear any driver overrides when the enable button is pressed.

 The DBW_System_Enable output is intended to be used within the application model as an indicator of
whether DBW system control is enabled.

See the joystick_teleop.slx and twist_controller.slx demo models to see how this block can be used in an
application-level system (Section 7).

Figure 39. DBW_System_Enable_Logic block.

6.2. Acceleration Control

This block implements a PI controller that actuates the throttle and brake to achieve a specified longitudinal
acceleration. The block is shown in Figure 40, and its I/O is summarized in Table 18. The acceleration controller
has a set of configuration parameters, whose default values are specified in the accel_controller_config_init.m
script. The script can be found in the lib/init scripts folder of the Dataspeed release package. This initialization
script is run in the Accel_Control block’s initialization function. It is recommended to only change the default
values if absolutely necessary.

Table 17. Port I/O of the DBW_System_Enable_Logic library block.

 Port Name Data Type Range Description

Inputs DBW_Enable_Buttton bool — Boolean signal that upon going high will clear

driver overrides and enable the DBW system.

 DBW_Disable_Button bool — Boolean signal that will disable the DBW system

upon going high.

 DBW_Driver_Override bool — Boolean status of the driver override conditions.
This should be the logical OR of all override

signals from each individual DBW interface.

Outputs DBW_System_Enable bool — Signal to indicate that DBW control is ready.

Intended for use within the model to control

program operation.

 DBW_Override_Clear bool — Should be routed to each CLEAR input of the

separate DBW interfaces.

Figure 40. Accel_Control block.

6.3. Speed and Steering Control

This block implements a closed-loop speed controller that outputs an acceleration command to track a forward
speed command. Also, it implements a kinematic steering controller to track a specified yaw rate command. The
block is shown in Figure 41, and its I/O is summarized in Table 19. The speed and steering controllers have a set of
configuration parameters, whose default values are specified in the speed_controller_config_init.m script. The
script can be found in the lib/init scripts folder of the Dataspeed release package. This initialization script is run in
the Speed_And_Steering_Control block’s initialization function. It is recommended to only change the default
values if absolutely necessary.

Table 18: Port I/O of the Accel_Control library block.

 Port Name Data Type Range Description

Inputs DBW_System_Enable bool — Boolean signal indicating if DBW system is enabled.

Expected to come from the

DBW_System_Enable_Logic block (Section 6.1).

 Accel_Cmd double -9.8 — 9.8 Desired longitudinal acceleration in m/s2.

 Vehicle_Accel double Application
Specific

Measurement of the current longitudinal

acceleration in m/s2.

 Vehicle_Fuel_Level double 0 — 100 Fuel level percentage. Expected to come from the

Fuel_Level_Receive block (Section 4.4).

 Driver_Throttle double 0.15 — 0.8 Current throttle position applied by driver.

This is used to detect when the driver takes over the

throttle. When the driver takes over, the controller

integrator is reset and brake output is disabled until

the driver releases the throttle, at which point

control resumes automatically.

Expected to come from the Throttle_Pedal_Physical

signal on the Throttle_Report_Bus (Section 3.1).

Outputs Throttle_Percent_Cmd double 0 — 1 Relative throttle output, where 0 is no throttle, and 1

is full throttle. Remember to scale this value into the

valid output range 0.15 – 0.8. An embedded

MATLAB code block to do this can be found in the

twist_controller.slx example model (Section 7).

Look for the Throttle_Percent_To_Command

embedded MATLAB function in the

Vehicle_Interface block.

 Brake_Torque_Cmd double 0 — 3412 Brake torque output in N-m. A lookup-table to map

brake torque to brake pedal command is

implemented in the twist_controller.slx example

model (Section 7). (Look for the

Brake_Torque_To_Command embedded MATLAB

function in the Vehicle_Interface block.)

Figure 41. Speed_And_Steering_Control block.

Table 19. Port I/O of the Speed_And_Steering_Control library block.

 Port Name Data Type Range Description

Inputs DBW_System_Enable bool — Boolean signal indicating if DBW system is enabled.

Expected to come from the

DBW_System_Enable_Logic block (Section 6.1).

 Target_Speed double 0 — 50 Set point speed for the controller to track in m/s.

 Target_Yaw_Rate double -2.0 — 2.0 Set point yaw rate in rad/s.

 Accel_Limit double 0 — 9.8 External acceleration limit in m/s2. If set to zero,

then the default value ACCEL_MAX from the

initialization script is used.

 Decel_Limit double 0 — 9.8 External deceleration limit in m/s2. If set to zero,

then the default value DECEL_MAX from the

initialization script is used.

 Vehicle_Speed double Application
Specific

Measurement of the current vehicle speed in m/s.

 Vehicle_Yaw_Rate double Application
Specific

Measurement of the current vehicle yaw rate in

rad/s.

 Vehicle_Fuel_Level double 0 — 100 Fuel level in percent.

Expected to come from the Fuel_Level_CAN_Receive

block (Section 4.4).

7. Demo Models

The provided demo models include:

 Model Template – Provides a starting point from which users can begin to implement their application
around a model that is pre-configured with Dataspeed DBW block libraries.

 Joystick Teleop – Uses the signals from a USB video game joystick to control the steering, brakes,
throttle and shifter.

 Twist Controller – Implements closed-loop control of throttle, brakes, and steering to track user-
specified forward speed and yaw-rate commands. It is recommended to reference this example model
when integrating the Accel_Control and Speed_And_Steering Control blocks (Sections 6.2 and 6.3)
into your own application-level model.

