==
DATASPEEDn..

Dataspeed Drive-By-Wire
dSPACE/Simulink Interface Blockset

User Manual

Documentation of the dSPACE Simulink blocks that interface
with the Dataspeed combination drive-by-wire module.

Author and Point of Contact:
Micho Radovnikovich

(mradovnikovich@dataspeedinc.com)

mailto:mradovnikovich@dataspeedinc.com

Contents

1.

2.

3.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

4,

4.1.

4.2,

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

5.

5.1.

5.2.

6.

6.1.

6.2.

6.3.

INEFOAUCTION ...ttt ettt e st e st e e bt e e s bt e e sab e e sabeesbeeesabeesabeeeaseeesabeeenns 4
Software INSTAllation..............cooiiiiiiiiii e e e e 6
Drive-by-Wire INterface BIOCKSooiiiiuiiieiiiiee ettt e rre e e bee e e e ave e e e e enaee e e e enreeas 6
Lo 1 4 (=T TPV P PRV 7
BrakKeot e bt e e h et e st e e s be e e s be e e bt e e anteesneeenareean 10
13 =TT 4 oV PP PPPPPPTP 13
SRITEEE ...ttt sttt st e bt e b e b e s bt s he e st e et et e e beesheesane e 16
TUPN SIBNAL ... e e et e e e e e ee e e e sbe e e e e sbeeeeesbtaeessstaeeesastaeessnntaeaennes 18
CoMPIELE INTEITACE. ... e e et e e e be e e e e sbae e e e sreee e enareeas 19
Vehicle Data BIOCKSc..cooiiiiiiieie ettt st sttt et ee s 20
WHREEI SPEEM..........eeeeeeeeee et e e et e e et e e e e et e e e e e abaee e e e abteeeeaabaeeeeenbeeeeennrenas 21
[}V o T TP PP PPPPPPPPTPPPTRE 22
ACCEIBIATION ...t ettt e s e e s bt e e sab e e s bt e e abe e sbe e e sabeesbeeeaneeesabeeenes 23
FUBI LEVEL ...t ettt b e b e s h et s a b e bt e st e e sbe e sat e st e sabe e beenbeens 23
THF@ PrESSUN ...ttt ettt e s e e bt e s b et e s b e e e smb e e st e e s meeesareeesnseesmreesanenesaneeaane 24
€] 2 OO PR PR PPRTPRPOPRRPRON 25
MISCEIlAaNEOUS DAtooiiiiiiiieiie ettt 26
Brakelnfo REPOIT DAtaooiiiiiiiiiecieee ettt e e et e e e ettt e e e et a e e e esataeeeeensaeeesansteeesannaaeanas 27
ADAS Kit INFO BIOCKScoueiiiiiiiiiieiee ettt et st sttt et be e be e s bee st e et e eeean 29
ADAS Kit FIrmwWare VErSiON.............ccccocuiiiiiiiiiiiiiiiiiiicc e 29
ADAS Kit LICENSE INTO ...t 30
CONELOI BIOCKS........cooiiiiiiieeie ettt ettt e st e e s e s e e smt e e sabe e e sareesareesneeesaneeenne 34
System ENable LOGIC BIOCKoooiiiiieeee et e e e e e et e e e e e e e rnnnnes 35
AcCCeleration CONIONcocoiiiiiiiiie et 36

Speed and SteeriNng CONIOlooiiiiiii e e e e e e e re e e e eareeas 37

7.

Demo Models

1. Introduction

This document describes the dSPACE Simulink blockset designed to communicate with the Dataspeed combination
Drive-By-Wire (DBW) hardware modules over CAN. For more details regarding the specific CAN messaging
interface to the DBW hardware modules, please refer to the individual product datasheets
(ThrottleBrakeDatasheet-RevA09.pdf, SteeringShifterDatasheet-RevA12.pdf).

The main Simulink library dataspeed_drive_by_wire.slx is shown in Figure 1. This library has the following
components:

e CAN Configuration — A pre-configured block that properly sets up the dSPACE RTICAN interface to send
messages to the Dataspeed DBW modules. All the dSPACE RTICAN blocks are pre-configured to use the
DataspeedByWire.dbc file to automatically configure the message structure.

IMPORTANT: When the CAN configuration block is placed in a new model, be sure to add the .dbc file
under the Data File Support tab. This is necessary for the correct path to the .dbc file to be set. The .dbc
file can be found in the lib folder in the Dataspeed DBW release package.

e Complete Interface Block — This block contains all DBW subsystems and provides the required inputs and
outputs to interface to the subsystems.

e Links to Individual Subsystems — These blocks simply open other Simulink libraries that contain individual
blocks for each DBW subsystem, and each individual vehicle data subsystem.

e Control Blocks — These blocks provide basic control functionality.

o Demo Models — Models that demonstrate the usage of the DBW interface blocks, and provide baselines
from which to expand.

Double-clicking the square boxes next to each model name will open a dialog box, shown in Figure 2.
The options are:

— Open - 0Open the demo model at its default location. It is not recommended to modify the model in
this case.

— Copy — This option copies the demo model into the current MATLAB working directory. Making
changes to this copy won’t affect the original demo model.

e
SETUP DATASPEED:-..

Drive-By-Wira
Interface Blocks

Thraithe_Pedal_Cmd Throttle_Report
Throithe_DBW_Enabile

Throitle DBW Creride_Clear Throttle_RX_viakd

Thrattle_DBW_Cwamride_lgnore
Thnatile_Walchdag_Gounter
Brake_Raport
Brake_Pedal_Cmd Yehicle Contral
Brake_BO0_Cmd Blocks

Brake_BO0_Thres LA

Brake_DBW_Enabie

Brake_DBW_Crvamide_Clear Etesnng_Report
Brake_DBW_Chveride_lgnore
Brake_'Waichdog_Counter

Figure 1. Main Simulink library.

E Opening Dataspeed Demo Model — >

Would you like to open the model_template model, copy it into your cument
working directory, or open the documentation?

Open Copy

Figure 2. Demo Models dialog box.

2. Software Installation

The process of installing the DBW Simulink blockset into MATLAB is as follows.

Using File Explorer, copy the root DBW folder onto you your hard drive in the place of your choosing.
Open MATLAB, and change MATLAB'S present working directory to be this newly added folder.
At the MATLAB Command Line, type “install” to run the DBW Blockset installation M-file script.

When prompted, simply hit “Enter” on your keyboard.

LAl S

The installation script will add all of the appropriate DBW Simulink blockset folders to your MATLAB path.

3. Drive-by-Wire Interface Blocks

This section describes the individual DBW interface blocks. These individual blocks can be found in the
drive_by_wire_blocks.slx library, which can be opened from the main library. They are shown in Figure 3.

Thraltle_Pedal_Cmd

Throtle_DBW._Enable Thiotis_Raport Bue
Thrattle_DBW_Owverride_Clear
Thrattle_DBW_Override_|ghore

Throttle_RX_Data_Valid
Thrattle_Watlchdog_Counter

Stearing_Cmd

Stearing_Velocity Steernng_Report_Bus

Steering_DEW_Enable

Stearing_DEW_Override_Clear

Stearing_DEW_Override_lgnore Steering_RX_Data_Valid

Steering_Walchdog_Counter

Brake_Peadal_Cmd
Brake_BOO_Crmd
Brake_Report Bus
Brake_BOO_Thres
Brake_DBW _Enable
Brake_DBW_Owverrde_Clear
Brake RX_Data_Valid

Brake_DBW_Owvernide_lgnore

Brake_Watchdog_Counter

Gaar_Cmd Gear_Report_Bus

Gaar_DBW _Owvernde_Clear GearRX_Data_Valid

Turm_Signal_Cmd

Figure 3. Drive-By-Wire Interface Blockset.

3.1. Throttle

The Throttle Interface block is shown in Figure 4 and Figure 5, and its 1/0 is described in Table 1. This block
packages pre-configured dSPACE RTICAN blocks to transmit the throttle command CAN message (ID = 0x62), and
receive the throttle report CAN message (ID = 0x63).

The Throttle_CAN_Transmit and Throttle_CAN_Receive subsystem blocks are shown in Figure 6 and Figure 7,
respectively.

The transmit block does the following:
e Passes the pedal command into the PCMD field of the throttle command CAN message.
e Passes the enable signal to the EN bit of the CAN message.
e Passes the clear signal to the CLEAR bit of the CAN message.
e Passes the ignore signal to the IGNORE bit of the CAN message.
The receive block does the following:
e Parses the throttle report message and combines the received data into a Simulink bus.

e The Throttle_RX_Data_Valid flag is used to indicate if the report message is being received.

Throttle_Pedal_Cmd

Throttle_DBW_Enable Throttle_Report_Bus >

Throttle_ DBW_Override_Ignore

),

),

> Throttle_DBW_Override_Clear

) .
Throttle_RX_Data_Valid [>

),

Throttle_Watchdog_Counter

Throttle_Interface

Figure 4. Throttle_Interface block.

Throttle_Pedal_Cmd

Throtile_Report_Bus
Throttle_DEW_Enable

Throttle_DEWN_Override_Clear
Throttle_FX_Diata_Valid

Throttle_DBW_Cherride_lgnore

Throttle_Watchdog_Counter

Figure 5. Throttle_Interface block.

PCMD

S

Throttle_Pedal_Cmd
Throttle_Pedal_Cmd ~ -

(2 } P EN
Throttle_DBW_Enable
Throttle_ DBW_Enable
(3} P CLEAR
Throttle DBW_Override_Clear
Throttle DBW_Override_Clear — -
4 P IGNORE
Throttle_ DBW _Override_lgnore
Throttle_ DBW_Override_Ignore
o
L5) | COUNT

Throttle Watchdog_Counter
Throttle_Watchdog_Counfer

Throttle Command
Group Id: RTICAN1

Figure 6. Throttle_CAN_Transmit block.

-~

i
1
Throtile_Repori_Bus D

Throttle_Report_Bus

el » >
Pl Throttle_Pedal_Physical
PC > >
PC Throttle_Pedal Cmd_Reported
PO » >
PO Throttle_Pedal_Final
WDCSRC > >
WOCSRC Throttle_Watchdog_Source
EN - >
EN Throttle_DBW_Enable
OVERRIDE r > . »
OVERRIDE Throttle_DBW_Cvaride
DRIVER > >
DRIVER Throttle_Driver_Activity
FLTWDC » >
FLTWDC Throttle_Watchdog_Fault
FLTY > >
FLT1 Throttle_CH1_Fault
FLT2 > >
FLTZ Throtile_CHZ_Fault
FLTPWR > >
FLTPWR Throttle_Power_Fault
TMOUT > - »
TMOUT Throttle_CAM_Messaging_Tmmeout
FX stafis P boolean

Throftle_Report

e BTICA N
d: RTICAN

-
2
Throttle_RX_Data_Walid g D

Throtile R¥_Data_Valid

Figure 7. Throttle_CAN_Receive block.

Table 1. Port I/O of the Throttle Interface Library block.

Port Name

Data Type Range

Description

Inputs

Throttle_Pedal_Cmd

Throttle_DBW_Enable

Throttle_DBW_Clear

Throttle_DBW_Override_Ignore

Throttle_Watchdog_Counter

double 0.15 —
0.8

bool —

bool —

bool —

uint8 0— 255

PWM duty cycle for the throttle pedal.
Values outside the range will be saturated.

Enable DBW throttle control.
TRUE: enable
FALSE: disable.

Clear driver override.
TRUE: request clear of driver override
FALSE: normal operation.

Ignore future driver overrides
TRUE: ignore overrides
FALSE: normal operation

Optional watchdog counter.

0: disables feature.

See datasheet (ThrottleBrakeDatasheet-
RevA09.pdf) for details

Outputs

Throttle_Report_Bus

Throttle_RX_Data_Valid

bus —

bool -

Simulink bus containing the data in the
throttle report CAN message.

See datasheet (ThrottleBrakeDatasheet-
RevA09.pdf) for details.

Flag indicating if data is being received over
the CAN network.

3.2. Brake

The Brake_Interface block is shown in Figure 8, and its I/O is described in Table 2. This block packages pre-
configured dSPACE RTICAN blocks to transmit the brake command CAN message (ID = 0x60), and receive the brake
report CAN message (ID = 0x61). Additionally, this block implements logic to control the BOO signal based on user
preferences.

The Brake_CAN_Transmit and Brake_CAN_Receive subsystem blocks are shown in Figure 9 and Figure 10,
respectively.

The transmit block does the following:

Passes the pedal command into the PCMD field of the CAN message.
Passes the enable signal into the EN bit of the CAN message.
Passes the clear signal to the CLEAR bit of the CAN message.

If BOO_Command is high, it overrides the pedal position logic and sets the BCMD bit to high in the CAN
message.

If BOO_Thres is less than the minimum pedal position command of 0.15, then the BCMD bit is set to high
when the pedal command becomes higher than the default value of 0.2.

If BOO_Thres is higher than 0.15, the BCMD bit is set to high when the pedal command becomes higher
than the specified threshold.

The receive block does the following:

Parses the brake report message and combines the received data into a Simulink bus.

The Brake_RX_Data_Valid flag is used to indicate if the report message is being received.

Table 2. Port I/O of the Brake Interface Library block.

Port Name

Data
Type

Range

Description

Inputs

Brake_Pedal_Cmd

Brake_BOO_Cmd

Brake_BOO_Thres

Brake_DBW_Enable

Brake_DBW_Override_Clear

Brake_DBW_Override_lgnore

Brake_Watchdog_Counter

double

bool

bool

bool

bool

bool

uint8

0.15—0.5

0—0.5

0— 255

PWM duty cycle for the throttle pedal.
Values outside the range will be saturated.

Flag to directly control the BOO signal.

TRUE: force BOO high,

FALSE: allow automatic BOO control based on pedal
position.

Used to override the default BOO pedal position
threshold of 0.2.

<0.15: use default threshold of 0.2.

> 0.15: replace threshold.

Enable DBW brake control.
TRUE: enable, FALSE: disable.

Clear driver override.
TRUE: request clear of driver override.
FALSE: normal operation.

Ignore future driver overrides
TRUE: ignore overrides
FALSE: normal operation

Optional watchdog counter.

0: disables feature.

See datasheet (ThrottleBrakeDatasheet-
RevA09.pdf) for details

Outputs

Brake_Report_Bus

Brake_RX_Data_Valid

bus

bool

Simulink bus containing the data in the brake report
CAN message.

See datasheet (ThrottleBrakeDatasheet-
RevA09.pdf) for details.

Flag indicating if data is being received over the
CAN network.

Brake_Pedal_Cmd
Brake_BOO_Cmd
Brake_Report_Bus [}
Brake_BOO_Thres

Brake_DBW_Override_Clear

Brake_DBW_Override_Ignore BrakeiniDaﬂivalid>

b
>
.
)l Brake_DBW_Enable
b
b
)

Brake_Watchdog_Counter

Brake_Interface

Brake_RX_Data_vsic|

Figure 8. Brake_Interface block.

1 " PCMD
<Brake_Pedal_Cmd>
Brake_Pedal_Cmd ~ ~
_J—l Pedal_Cmd
3 BOO_Thres $ 800,
Sreke ST, e 80D Treess <Final BOD_Thres> oot teds <B00_Hyst> o o
o5, (S| o 500 e ot S—
BOO_Hysteresis
EN
&,
<Brake_BOD_Cmd>
Brake_BOO Cmd ~ ~
G LEAR
<Brake_DBW_Enable>
Brake_DBW_Enatls — ~
G :
<Braks_DBW_Overrids_Clears
Brake_DBW_Override_ Claar p—
B - ‘
<Brake DBW_Override_lgnore>
Brake_DBW_Override. lgnare
‘ JOUNT
<Braks_Watchdog_Counter>

7
Brad Haiehang. G ‘Brave. Command
Group ld: RTICAN

Figure 9. Brake_CAN_Transmit block.

Brake_Report_Bus

(D)

Brake_Report_Bus

w2

FI d >
Fl Brake_Pedal Physical
PC i »
PC Brake_Pedal Cmd_Reparted
PO > >
PO Brake_Pedal_Final
BO g >
BO Brake_BOO_Actual
BC > >
BC Brake_BOO_Cmd_Reported
El s >
Bl Brake_BOD_Physical
WDCERK ' >
WDCZERK Brake_Watchdog_BEraking
WDCSRC i »
WOCSRC Brake_Watchdog_Source
EN ! >
EN Brake_DBW_Enable
OVERRIDE - L
OVERRIDE Brake_DBW_Cwerride
DRIVER - L
DRIVER Brake_Driver_Activity
FLTWDC s >
FLTWDC Brake_Watchdog_Fault
FLT1 s >
FLT1 Brake_CH1_Fault
FLTZ d >
FLTZ Brake_CHZ_Fault
FLTPWR i »
FLTFWR Brake_Power_Fault
TMOUT - L
TMOUT Brake_CAM_Meassaging_Tmeout
RX status o P boolean -
5_7 L———""Brake_Rx_Data_Valid
Brake_Reporil
Group Id: RTICAN1

3.3. Steering

The Steering_Interface block is shown in Figure 11, and its I/O is described in Table 3.

Figure 10. Brake_CAN_Receive block.

Brake_RX_Data_Walid

This block packages pre-

configured dSPACE RTICAN blocks to transmit the steering command CAN message (ID = 0x64), and receive the
steering report CAN message (ID = 0x65).

The Steering_CAN_Transmit and Steering_CAN_Receive subsystem blocks are shown in Figure 12 and Figure 13,

respectively.

The transmit block does the following:

e Passes the steering command into the SCMD field of the steering command CAN message.

e Passes the enable signal into EN bit of the CAN message.

e Passes the clear signal to the CLEAR bit of the CAN message.

e Passes the steering velocity command into the SVEL field of the CAN message.

The receive block does the following:

e Parses the steering report message and combines the received data into a Simulink bus.

e The Steering_RX_Data_Valid flag is used to indicate if the report message is being received.

(2]
(2]
«»
(5)
a»

Steering_Cmd
Steering_Velocity Steering_Report_Bus }
Steering_DBW._Enable

Steering_DBW_Override_Clear
Steering_DBW_Override_lgnore ~ Steering_RX_Data_Valid [

Steering_Watchdog_Counter

Steering_Interface

‘Steering_Cmd ‘Bteering_Report_Bus
‘Steering_Velocity_Limit Stoering RO Data_Vakd
‘Steering_DBW _Enable

Sieering_DBW _Clear_Owerride

Steering_DBW_Cwemide_lgnore

Steering_Watchdog_Counter

Figure 11. Steering_Interface block.

L1) » SCMD
- Steering_Cmd
Steering_Cmd
L3) » EN
. Steering_ DBW_Enable
Steering_DBW_Enable
(4) » CLEAR
. Steering_DBW_Clear_Override
Steering_DBW_Clear_Override
(5) » IGNORE
. Steering_ DBW_Override_lgnore
Steering_DBW_Override_Ignore
(2 } » SVEL
. . Stee_rir]?_Velocily_Limil
Steering_Velocity_Limi
(6) » COUNT
. Steering_Watchdog_Counter
Steering_Watchdog_Counter

Steering_Command1
Group Id: RTICANT

Figure 12. Steering_CAN_Transmit block.

L&D

Steering_Report_Bus

ANGLE 4 »
AMNGLE Stearing_Angle
CMD > »
CMD - Steering_Cmd_Reporied -
SPEED » »
SPEED "l Vehice_Speed -
TORQUE > »
TORQUE Steering_Torgue
EN > >
EN Steering_DBW_Enable
OVERRIDE > >
OWERRIDE Sieering_DBW_Owerride
FLTPWR > p-J] Sieering_Repori_Bus
FLTPWR Stearing_Power_Fault
FLTWDC > g
FLTWDC Stearing_Watchdog_Fault
FLT? ' >
FLT1 Stearing_Bus1_Fault
FLT2 4 »
FLTZ "l Steering_Bus2_Fautt -
FLTCAL 4 »
FLTCAL Steering_Fault_Calibration
TMOUT > »
TMOUT Steering_Connector_Fault
R stafus - hoolean - -
6—9 Steering_RX_Data_Walid

Steering_FReport

LD i

Growo id: RTI

Figure 13. Steering_CAN_Receive block.

2)

Steering_RX_Data_\alid

Table 3. Port I/O of the Steering_Interface library block.

Port Name

Data
Type

Range

Description

Inputs Steering_Cmd

Steering_Velocity

Steering_DBW_Enable

Steering_DBW_Override_Clear

Steering_DBW_Override_lgnore

Steering_Watchdog_Counter

double

bool

bool

bool

uint8

-470 — 470

0-500

0— 255

Steering wheel angle command in degrees.
Values outside the range will be saturated.

Maximum velocity in deg/sec to use while moving
steering wheel to desired angle.

Setting to zero will default to maximum of 500
deg/sec.

Enable DBW steering control.
TRUE: enable
FALSE: disable.

Clear driver override.
TRUE: request clear of driver override.
FALSE: normal operation.

Ignore future driver overrides
TRUE: ignore overrides
FALSE: normal operation

Optional watchdog counter.

0: disables feature.

See datasheet (SteeringShifterDatasheet-
RevA12.pdf) for details.

Outputs Steering_Report_Bus

Steering_RX_Data_Valid

bus

bool

Simulink bus containing the data in the steering
report CAN message.

See datasheet (SteeringShifterDatasheet-
RevA12.pdf) for details.

Flag indicating if data is being received over the
CAN network.

3.4. Shifter

The Shifter_Interface block is shown in Figure 14, and its |/O is described in Table 4. This block packages pre-
configured dSPACE RTICAN blocks to transmit the gear command CAN message (ID = 0x66), and receive the gear

report CAN message (ID = 0x67).

The Gear_CAN_Transmit and Gear_CAN_Receive subsystem blocks are shown in Figure 15 and Figure 16,

respectively.

The transmit block does the following:

e Passes the gear command into the GCMD filed of the gear command CAN message.

e Passes the clear signal to the CLEAR bit of the gear command CAN message.

e If the gear command is equal to zero, the hardware module will ignore the command.
e Ifthe command is between 1 and 5, then the corresponding gear is selected.

The receive block does the following:
e Parses the gear report message and combines the received data into a Simulink bus.

e The CAN_RX_Data_Valid flag is used to indicate if the report message is being received.

) Gear_Cmd Gear_Report_Bus >

) Gear_DBW_Override_Clear Gear_RX_ Data_Valid >

Shifter_Interface

Figure 14. Shifter_Interface block.

uint8 » ceMD
Gear_Cmd

Gear_Cmd

P CLEAR
Gear_DBW_Override_Clear
Gear_DBW_Override_Clear

Gear_Command1
Group Id: RTICANT

Figure 15. Gear_CAN_Transmit block.

STATE
STATE

Gear_State

DRIVER
DRIVER

—

" Gear_Driver_Override

"D

CMD
CMD

Gear_Cmd_Reported

Gear_Report_Bus
Gear_Reporl_Bus

FLTEUS
FLTBUS

R status

Gear_Bus_Fault
»[boolean

Gear_Report

up Id: RTICANT

———

L
—— Gear_RX_Data_\alid @

Gear_RX_Dala_Valid

Figure 16. Gear_CAN_Receive block.

Table 4. Port 1/0 of the Shifter_Interface library block.

Port Name

Data Type

Range

Description

Inputs Gear_Cmd

Clear

uint8

bool

0—5

Enumeration of desired shifter position.
0: None

1—5:P,RN,D,L

Clear driver override.

TRUE: request clear of driver override.
FALSE: normal operation.

Outputs Report

Gear_RX_Data_Valid

bus

bool

Simulink bus containing the data in the gear report
CAN message.

See datasheet (SteeringShifterDatasheet-
RevA12.pdf) for details.

Flag indicating if data is being received over the CAN
network.

3.5. Turn Signal

The Turn_Signal_Interface block is shown in Figure 17, and its I/O is described in Table 5. This block packages a
pre-configured dSPACE RTICAN block to transmit the turn signal command CAN message (ID = 0x68). The turn
signal report status can be accessed in the Misc_CAN_Receive block. See Section 4.7 for details.

The Signal_CAN_Transmit block is shown in Figure 18.

The transmit block does the following:

e Passes the turn signal command into the TRNCMD field of the turn signal command CAN message.

e |fthe command is 0, all signals turn off.

e |fthe command is 1, the left signal turns on.

e |f the command is 2, the right signal turns on.

Turn_Signal_Cmd

) Turn_Signal_Cmd

Turn_Signal_Interface

Figure 17. Turn_Signal_Interface block

1) P uint8 P TRNCMD
Turn_Signal_Cmd
Turn_Signal_Cmd

TurnSignal_Command
Group Id: RTICAN1

Figure 18. Signal_CAN_Transmit block

Table 5. Port I/O of the Turn_Signal_Interface library block.

Port Name Data Type Range Description
Inputs Signal_Cmd uint8 0—2 Enumeration of desired shifter position.
0: None
1: Left
2: Right

3.6. Complete Interface

In the main library, a block is provided that contains all of the individual subsystem interfaces, as shown in Figure
19 and Figure 20.

Throttle_Pedal_Crel Throttle_Report | »
Thrattle_DEW _Enable
Thrattle_ DBW _Cverride_Clear Throttle_RX_Valid [»
Thrattle_ DBW _Cwverride_Ignore
Thrattle_Watchdog_Counter
Brake_Report |»
Brake_Pedal_Cmd
Brake_BOO_Cmd
Brake_BOO_Thres Brake_RX_Valid |[»
Brake_DBW_Enable
Brake_DEW_Override_Clear Steering_Report | »
Brake_DBW_Override_lgnore
Brake_Watchdag_Counter Steering_RX_Valid [»
Stearing Cmd
Steering_Velocity
Gear_Report [
Steering_DEW_Enable
Stearing_DBEW_Override_Clear
Steering_DBW_Override_lgnore Gear_RX_Valid |»
Steering_Watchdog Counter
Gear_Cmd Mise_Report |»

Gear_DBW_Owerrirde_Clear

LY RV EVEVEVEVEVEVEVEAVEVEVEAVAVEAVEVEVEVEAVEVAN]

Uil ol Misc_RX_Valid [»

Drive_By_Wire_Interface

Figure 19. Complete Drive_By_Wire_Interface block.

Figure 20. Complete Drive_By_Wire_Interface block (internals).

4. Vehicle Data Blocks

The DBW hardware module listens to data that is available on the main vehicle CAN networks, and re-transmits the
data on the DBW CAN network.

The vehicle data that is re-transmitted includes:

e Wheel Speed — The four individual wheel speed measurements in rad/s.

e Gyro - The roll and yaw rate measurements in rad/s.

e Acceleration — Longitudinal, lateral and vertical acceleration measurements in m/s2.

e Misc Data — Miscellaneous data containing turn signal, wiper, and high-beam status, as well as the state
of many of the buttons on the steering wheel.

Blocks to access the re-transmitted data are provided in the vehicle_data_blocks.slx library, which is shown in
Figure 21. This library can also be opened from the main dataspeed_drive_by_wire.slx library.

Wheel_Speed_Bus

Wheel Speed RX_Data_Valid

Gyro_Bus

Gyro_R¥_Data_Valid

Fuel_Level

Fuel RX_Data_Valid

4.1. Wheel Speed

Accel_Bus

Accel RX_Data_Valid

Misc_Report_Bus

Mise_RX_Data_Valid

Tire_Pressure_Bus

Tire_Pressure_RX_Data_Valid

Figure 21. Vehicle Data Library.

Brakelnfa_Bus

Brakelnfo_RX_Data_Valid

GPS_Data_1_Bus

GPS_RX_Data_Valid_1

GPS_Data 2 Bus

GPS_RX_Data_Valid_2

GPS_Data 3 Bus

GPS_RX_Data_Valid_3

The Wheel_Speed_CAN_Receive block is shown in Figure 22, and its I/O is described in Table 6.

Wheel_Speed_Bus

Wheel_Speed_RX_Data_Valid

Wheel_Speed_CAN_Receive

Figure 22. Wheel_Speed_CAN_Receive block.

Table 6. Port I/O of the Wheel_Speed_CAN_Receive library block.

Port Name Data Type Range Description

Outputs Wheel_Speed_Bus bus — Simulink bus containing the four individual
wheel speeds in rad/s.

Wheel_Speed_RX_Data_Valid bool - Flag indicating if data is being received over the
CAN network.

4.2. Gyro

The Gyro_CAN_Receive block is shown in Figure 23, and its I/O is described in Table 7.

boclean

Gyro_Bus

Gyro_RX_Data_Valid

Gyro_CAN_Receive

Figure 23. Gyro_CAN_Receive block.

Table 7. Port I/0 of the Gyro_CAN_Receive library block.

Port Name Data Type Range Description

Outputs Gyro_Bus bus — Simulink bus containing the vehicle roll and yaw
rates in rad/s.

Gyro_RX_Data_Valid bool - Flag indicating if data is being received over the
CAN network.

4.3. Acceleration

The Accel_CAN_Receive block is shown in Figure 24, and its I/O is described in Table 8.

Accel_Bus

Accel RX_ Data_Valid

Accel_CAN_Receive

Figure 24. Accel_CAN_Receive block.

Table 8: Port I/O of the Accel_CAN_Receive library block.

Port Name Data Type Range Description

Outputs Accel_Bus bus - Simulink bus containing the longitudinal, lateral
and vertical acceleration in m/s2.

Accel_RX_Data_Valid bool - Flag indicating if data is being received over the
CAN network.

4.4. Fuel Level

The Fuel_Level_CAN_Receive block is shown in Figure 25, and its /O is described in Table 9.

Fuel_Level >

boolean

Fuel RX_Data_Valid [

Fuel Level CAN Receive

Figure 25. Fuel_Level_CAN_Receive block.

Table 9. Port I/0 of the fuel level data library block.

Port Name Data Type Range Description
Outputs Fuel_Level double 0— 100 Current fuel level percentage.
Fuel_RX_Data_Valid bool - Flag indicating if data is being received over the

CAN network.

4.5. Tire Pressure

The Tire_Pressure_CAN_Receive block is shown in Figure 26, and its I/O is described in Table 10.

Tire_Pressure_Bus >

Tire_Pressure_RX_Data_Valid >

Tire_Préssure_CAN_Receive

Figure 26. Tire_Pressure_CAN_Receive block.

Table 10. Port I/O of the Tire_Pressure_CAN_Receive library block.

Port Name Data Type Range Description
Outputs Tire_Pressure_Bus bus 0 — 65535 Simulink bus containing tire pressure for each
tire in kPa.
Tire_Pressure_RX_Data_Valid bool — Flag indicating if data is being received over

the CAN network.

4.6. GPS

The GPS_CAN_Receive block is shown in Figure 27, and its I/O is described in Table 11

GPS_Data_1_Bus
GPS_RX_Data_Valid_1

GPS_Data_2_Bus

p

p

p

GPS_RX_Data_Valid_2 [y
GPS_Data_3_Bus [}

p

GPS_RX_Data_Valid_3

GPS_CAN_Receive

Figure 27. GPS_CAN_Receive block.

Table 11. Port I/O of the GPS_CAN_Receive library block.

Port Name Data Type Range

Description

Outputs GPS_Data_1 bus —

GPS_RX_Data_Valid_1 bool —

GPS_Data_2 bus —

GPS_RX_Data_Valid_2 bool —

GPS_Data_3 bus —

GPS_RX_Data_Valid_3 bool —

Simulink bus containing latitude and longitude data.
See datasheet (SteeringShifterDatasheet-
RevA12.pdf) for details.

Flag indicating if data is being received over the CAN
network.

Simulink bus containing GPS time stamp.
See datasheet (SteeringShifterDatasheet-
RevA12.pdf) for details.

Flag indicating if data is being received over the CAN
network.

Simulink bus containing altitude, heading, speed, and
DOP values.

See datasheet (SteeringShifterDatasheet-
RevA12.pdf) for details.

Flag indicating if data is being received over the CAN
network.

4.7. Miscellaneous Data

The Misc_CAN_Receive block is shown in Figure 28, and its I/O is described in Table 12.

Table 12: Port I/O of the Misc_CAN_Receive library block.

Port Name Data Type Range Description
Outputs Misc_Report_Bus bus — Simulink bus containing the information in the
Miscellaneous Report CAN message (ID = 0x69).
See the Steering-Shifter module datasheet for
details (SteeringShifterDatasheet-RevA12.pdf).
Misc_RX_Data_Valid bool - Flag indicating if data is being received over the

CAN network.

Misc_Report_Bus >

Misc_RX_Data_Valid [

Misc_ CAN_Receive

Figure 28. Misc_CAN_Receive block.

4.8. Brakelnfo Report Data

The Brakelnfo_Report_CAN_Receive block is shown in Figure 29, and its I/O is described in Table 13.

Brakelnfo_Bus >

Brakelnfo_RX_Data_Valid [»

Brakelnfo Report CAN_Receive

Figure 29. Brakelnfo_Report_CAN_Receive block.

Table 13: Port I/0 of the Brakelnfo_CAN_Receive library block.

Port Name Data Type Range Description

Outputs Brakelnfo_Report_Bus bus — Simulink bus containing the information in the
Miscellaneous Report CAN message (ID = 0x69).
See the Steering-Shifter module datasheet for
details (SteeringShifterDatasheet-RevA12.pdf).

Brakelnfo_RX_Data_Valid bool - Flag indicating if data is being received over the
CAN network.

5. ADAS Kit Info Blocks

These library blocks de-multiplex and bundle like data pertaining to the ADAS Kit itself, into the following Simulink
buses:

Firmware Version (one bus each for Brake, Throttle and Steering/Shift)
License General Info

MAC Address

Build Date

VIN (Vehicle Identification Number)

Software Features (one bus for each feature)

GAN CONTROLLER
I SETUP

Firmware_\ler_Brake_Bus

Firmware_Ver_Throtile_Bus

Firmware_‘er_SteerShift_Bus

Firmware_Ver_Rx_Data_\abd

License_General_Info_Bus

Build_Diate_Bus

Figure 30. ADAS Kit License Info Library.

5.1. ADAS Kit Firmware Version

The ADAS_Kit_Firmware_Version block is shown in Figure 31, and its output is described in Table 6.

Firmware_Ver_Brake_Bus [»
Firmware_Ver_Throtlle_Bus [
Firmware_Ver_SteerShifi_Bus [¥

Firmwars_Wer_Rx_Data_\Vald [»

MOOULE

ADAS_Kit_Firmware_\Version

MODULE Frmware_ver_Module_id

MAJIR

MAIDR Frmware_Ver_Majar_Fiekl

MINOR

MINOR Frmware_ver_Minar_Fiekd

-

BUILD

BULD

Frmware_ver_Buld_Fioid

X st
i Frmware_ver_Fo_Dala_valkl

Version
o Idd: RTICANT

< [Firmware_Ver_infa_Bus]|

Firmware_Ver_Rx_Data_Valid

] |

Firmware_Ves_Inf_Bus]| Finmwarn_Ver_infa_Bus F rw.am_vnv_avan_wl—@
Firmware_Ver_Brake_Bus

Firmware_ver_Brake

=] .

n
Firmware_Ver_Infa_Bus] Fimmuwarn_Ver_ina_Eus Fm.m_\:cr_wuun_w
Firrnware_er_Throtlle,_Gus

Firmware_ver_Theotil:

=] |

n
Firmware_Ver_Infa_Bus] Firmuwarn_Ver_ina_Eus =r1r~:m_'\m'_slccrsrm_5~c|—@
Firrmware_\ar_SteerShift_Bus

Firmware_\Ver_SteerShift

Figure 31. ADAS_Kit_Firmware_Version block.

Table 14. Port I/O of the ADAS_Kit_Firmware_Version library block.

Port Name DataType Range Description
Outputs Firmware_Ver_Brake_Bus — — Simulink bus containing firmware version

information for the brake module.

Firmware_Ver_Throttle_Bus — — Simulink bus containing firmware version
information for the throttle module.

Firmware_Ver_SteerShift_Bus — — Simulink bus containing firmware version
information for the steer/shift module.

Firmware_Version_Rx_Data_Valid bool — Flag indicating if data is being received over
the CAN network.

5.2. ADAS Kit License Info

The ADAS_Kit_License_Info block is shown in Figure 32, and its I/O is described in Table 15. Details of each bus

are shown in Figure 33 through Figure 37.

License_General_info_Bus [

Featurs_Base_Bus [»

MAC _Bus [

Build_Date_Bus [»

VIN_Bus [»

License_Manager_RX_Data_Viakd I}

ADAS_Kit_License_info

Figure 32. ADAS_Kit_License_Info block.

I License_Manager_Ready

A

l Trial_License

Expired License

1‘ h 4

License_General_Info_Bus

~ License_General_Info_Bus

Figure 33. License_General_Info bus.

MAC_Mux_Select

o]

Il

MACO_Mux MACO_M; >
[MACO_Mux]> \CO_Mux MACO ACos
MACT_Mux] > MAC1_Mux MAC1
<MACT>
MAC2_Mux[™> MAC2_Mux MAC2
MAC_Bi
MAC3_Mux> MAC3_Mux MAC3 s MAC_Bus
<MAC3> -
MAC4_Mux MAC4_M MAC4 >
[MACE Mux>—————————»MACH Mux pryrT e
MAC5_Mux 5 >
[MAC5_Mux]> MACS_Mux MAC YT
MAC

Figure 34. MAC bus.

129

Date_Part1_Mux_Select

Buidd_Date_Bus

Build_Date_Bus

jiDated_Mux> Dated_Mux Buid_Dated .
<Build_Datel>
[Datel_Mux Datel_Mux Buid_Datel
Bt o >——————foser - <Bud_Det>
[Datez_Mux]™> Diata2_Mux Buid_Date? -
<Build_DateZ=
[Date3_Mux]™s Diata3_Mux Buid_Date3 -
<Build_Date3=
[Dated_hux Dated_Mux Buid_Dated
[Dates Mo g - B Daret
[DateS_Mux[> Date5_Mux Buid_Date5 -
<Build_Date5>
Buid_Date_Part1
<Build_Datef>
<Build_DateT>
> 30 «<Build_Date8>
Date_Part2_Mux_Selact
<Build_Dated>
[Datef_Mux] > Datef_NMux Buid_Dateb
[Date7_Mux] > Date?_Mux Buid_Date7
[DateB_Mux] > DateB_Mux Buid_Date8
[Date_Mux| = Dated_hux Buid_Dated

Build_Date_PariZ

Figure 35. Build_Date bus.

n
[el v b WIHH
M| [T WIS
-.-'uu Max Wi
[P Pohan] e ey e ¥inLl T
o
[FRH e o b R e
.
S b s v
WIN_Purt] *
eI
.
P
o
CePEH
R i WM -
\ o
e W C T WINT e
.
-.-'un Mz WINE e T
[T - o
man —
w“ .
[sl e
O e (1 UM TS vy *
UKt
VIN_Part2 ul
T
-
» T
WK Partd_ e Hulect o
T
i e
ml? Max WINEZ
-
e
T e W IR WML e
mu- Mz WM
N e W I WIHE
[T slumie e g
WM Pt

Figure 36. VIN bus.

Feature_Info_Mux_Select

IFealu re_Base_Enabled_Mux] ————————P|Feature_Base Enabled Mux Feature_Base_Enabled
<Feature_Base_Enabled>

| [Feature_Base_Trial_Mux] »| Feature_Base_Trial_Mux Feature_Base_Trial .
<Feature_Base_Trial>

Feature_Base_Bus

Feature_Base_Trials_Used_Mux Feature_Base_Trials_Used_Mux Feature_Base_Trials_Used > Feature_Base_Bu
| - ' ! <Feature_Base_Trials_Used>

[Feature_Base_Trials_Remaining_MURI_—=—— | Feature_Base_Trials_Remaining_Mux Feature_Base_Trials_Remaining

<Feature_Base Trials_Remaining> -

Feature_Info

Figure 37. Feature_Base bus.

Table 16. Port I/O of the ADAS_Kit_License_Info library block.

Port Name Data Type Range Description

Outputs License_General_Info_Bus bus — Simulink bus containing bit flags indicating if
the overall data for this block has yet been
updated, if this is a trial license, and if the
license has expired.

MAC_Bus bus — Simulink bus containing the MAC address of the
Kit. MACO is the first (leftmost) field in the
address. MACS is the last.

Build Date_Bus bus — Simulink bus containing the build date of the
kit's firmware. (Format: YYYY /MM / DD).

VIN_Bus bus — Simulink bus containing the VIN. VINO is the
first (leftmost) character in the address. VIN16
is the last.

Feature_Base_Bus bus — Simulink bus providing licensing status

information for the software feature called
"Base". It contains bit flags reporting if this
feature is enabled, and if it is a trial. For trials,
it reports the number of trials used and the
number remaining.

License_Manager_RX_Data_Valid bool — Flag indicating if data is being received over the
CAN network.

6. Control Blocks

These blocks can be found in the control_blocks.sIx library, which can be opened from the main library.

The library is shown in Figure 38. The control blocks assist the user in getting a functioning system up and running
quickly.

These blocks are:

e The DBW_System_Enable_Logic block allows the use of steering wheel buttons to enable and disable the
DBW and application level systems.

e The Accel_Control block provides a closed-loop acceleration control system that actuates the throttle and
brake to achieve a target acceleration.

e The Speed_And_Steering_Control block provides a closed-loop speed controller that outputs a desired
acceleration control.

DBW_System_Enable DBW_System_Enable

i Throttle_Percent
Target_Speed Steering_Wheel_Angle Accel_Cmd

Vehicle_Accel
Target_Yaw_Rate

Vehicle_Fuel_Level
Accel_Limit

Driver_Throttle

Decel_Limit

Vehicle_Speed

DBW_Enable_Button

Vehicle_Yaw Rate DBW_System_Enable

Current_Accel

DBW_Disable_Button
Vehicle_Fuel_Level

DBW._Driver_Override HEVIECE e deNCieay

Figure 38. Individual Control Blocks library.

6.1. System Enable Logic Block

This block provides a method of using the steering wheel buttons that are available in the Misc_Report_Bus
message (Section 4.7) to enable and disable the DBW control. This block is shown in Figure 39, and its I/O is
summarized in Table 17.

The system enable logic block does the following:

e Waits for the DBW_Enable_Button input to go high, which then triggers the DBW_Override_Clear output
high to request clearing of the driver override states of each DBW module.

e Waits until the DBW_Driver_Override input signal goes low, indicating that all driver override signals have
been cleared. Once this happens, the DBW_System_Enable signal is set high to indicate that DBW control
is ready.

e Listens for either the DBW_Disable_Button input or the DBW_Driver_Override input to go high,
indicating that the driver pressed the disable button or intervened with control of the steering wheel,
pedals, or shifter. In this case, the DBW_System_Enable output is set low to indicate that the driver has
disabled the system.

e The DBW_Driver_Override input should be the logical OR of all the individual override bits received from
the CAN report messages from each DBW module.

e The DBW_Override_Clear output should be connected to all the CLEAR inputs on each DBW interface
block to appropriately clear any driver overrides when the enable button is pressed.

e The DBW_System_Enable output is intended to be used within the application model as an indicator of
whether DBW system control is enabled.

See the joystick_teleop.slx and twist_controller.slx demo models to see how this block can be used in an
application-level system (Section 7).

) DBW_Enable_Button
DBW_System_Enable >

) DBW_Disable_Button

) DBW_Driver_Override DBW_Override_Clear >

DBW_System_Enable_Logic

disable_button

boolean

driver ‘ boolean
dbw_enable

last_en

last_state

Figure 39. DBW_System_Enable_Logic block.

6.2. Acceleration Control

This block implements a Pl controller that actuates the throttle and brake to achieve a specified longitudinal
acceleration. The block is shown in Figure 40, and its I/O is summarized in Table 18. The acceleration controller
has a set of configuration parameters, whose default values are specified in the accel_controller_config_init.m
script. The script can be found in the lib/init scripts folder of the Dataspeed release package. This initialization
script is run in the Accel_Control block’s initialization function. It is recommended to only change the default
values if absolutely necessary.

Table 17. Port I/0O of the DBW_System_Enable_Logic library block.

Port Name Data Type Range Description

Inputs DBW_Enable_Buttton bool — Boolean signal that upon going high will clear
driver overrides and enable the DBW system.

DBW_Disable_Button bool — Boolean signal that will disable the DBW system
upon going high.

DBW_Driver_Override bool — Boolean status of the driver override conditions.
This should be the logical OR of all override
signals from each individual DBW interface.

Outputs DBW_System_Enable bool — Signal to indicate that DBW control is ready.

Intended for use within the model to control
program operation.

DBW_Override_Clear bool — Should be routed to each CLEAR input of the
separate DBW interfaces.

) DBW_System_Enable
% Accel_Cmd Throttle_Percent [»
M Vehicle_Accel
> Vehicle_Fuel_Level

Brake_Torque [
) Driver_Throttle

Accel_Control

f0)

function()

DBW_System_Enable

g

DBW._

oW

ystem_Enable
Accel_Cmd Throttle_Percent

<Thrattle_Percent>,
Throttle_Percent

g

[e]
3
a

>
a
a
@

Vehicle_Accel

(4

Vehicle_Accel

()

Vehicle_Fuel_Level

P Driver_Throttle Brake_Torque

) <Brake_Torque>
Driver_Throttle Brake_Torque

Vehicle_Fuel_Level

g

Calibration_Parameters_Bus

Calibration_Parameters_Bus Colbraion P 5
< s_Bus>
alibration_Paramelers_Bus: Accel_Control_Algorithm

Configuration_Parameters
Figure 40. Accel_Control block.

6.3. Speed and Steering Control

This block implements a closed-loop speed controller that outputs an acceleration command to track a forward
speed command. Also, it implements a kinematic steering controller to track a specified yaw rate command. The
block is shown in Figure 41, and its I/O is summarized in Table 19. The speed and steering controllers have a set of
configuration parameters, whose default values are specified in the speed_controller_config_init.m script. The
script can be found in the lib/init scripts folder of the Dataspeed release package. This initialization script is run in
the Speed_And_Steering_Control block’s initialization function. It is recommended to only change the default
values if absolutely necessary.

Table 18: Port 1/O of the Accel_Control library block.

Port Name

Data Type

Range

Description

Inputs DBW_System_Enable

Accel_Cmd

Vehicle_Accel

Vehicle_Fuel_Level

Driver_Throttle

bool

double

double

double

double

-9.8—9.8

Application
Specific

0— 100

0.15—10.8

Boolean signal indicating if DBW system is enabled.
Expected to come from the
DBW_System_Enable_Logic block (Section 6.1).

Desired longitudinal acceleration in m/s2.

Measurement of the current longitudinal
acceleration in m/s2.

Fuel level percentage. Expected to come from the
Fuel_Level_Receive block (Section 4.4).

Current throttle position applied by driver.

This is used to detect when the driver takes over the
throttle. When the driver takes over, the controller
integrator is reset and brake output is disabled until
the driver releases the throttle, at which point
control resumes automatically.

Expected to come from the Throttle_Pedal_Physical
signal on the Throttle_Report_Bus (Section 3.1).

Outputs Throttle_Percent_Cmd

Brake_Torque_Cmd

double

double

0 — 3412

Relative throttle output, where 0 is no throttle, and 1
is full throttle. Remember to scale this value into the
valid output range 0.15 - 0.8. An embedded
MATLAB code block to do this can be found in the
twist_controller.slx example model (Section 7).

Look for the Throttle_Percent_To_Command
embedded MATLAB function in the
Vehicle_Interface block.

Brake torque output in N-m. A lookup-table to map
brake torque to brake pedal command is
implemented in the twist_controller.slx example
model (Section 7). (Look for the
Brake_Torque_To_Command embedded MATLAB
function in the Vehicle_Interface block.)

Target_Speed

Target_Yaw_Rate

Accel_Limit

Decel_Limit

Vehicle_Speed

Vehicle_Yaw_Rate

N N NS NS N NS NS NS

Vehicle_Fuel_Level

DBW_System_Enable

Steering_Wheel_Angle

Accel_Cmd

Current_Accel

Speed_And_Steering_Control

D

DBW_System_Enable
Target_Speed
Target_Yaw_Rate

Accel_Limit

Decel_Limit

G

Vehicle_Speed

Vehicle_Yaw_Rate

Vehicle_Fuel_Level
Calibration_§

function()
DBIY_System_Enable

Targel_Speed Steering_Wheel_Angle

Targel_Yaw_Rate

Accel_Limit
Decel_Limit Accel_Cmd
Vehicle_Speed

Viehicle_Yaw_Rate

Vehicle_Fuel_Level Current_

<Staering Wheel_Angle>

el Cmd>

Steering_Wheel_Angle

P D

Accel_Cmd

<Calibration_Paramaters_Bus>

Bus

alibeation_|

<Cument_Accel

Calibration_Parameters

Speed_And_Steering_Control_Algorithm

Figure 41. Speed_And_Steering_Control block.

(3

Current_Accel

Table 19. Port I/O of the Speed_And_Steering_Control library block.

Port Name Data Type Range Description

Inputs DBW_System_Enable bool — Boolean signal indicating if DBW system is enabled.
Expected to come from the
DBW_System_Enable_Logic block (Section 6.1).

Target_Speed double 0—50 Set point speed for the controller to track in m/s.
Target_Yaw_Rate double -2.0—2.0 Set point yaw rate in rad/s.
Accel_Limit double 0—9.8 External acceleration limit in m/s2. If set to zero,

then the default value ACCEL_MAX from the
initialization script is used.

Decel_Limit double 0—9.8 External deceleration limit in m/s2. If set to zero,
then the default value DECEL_MAX from the
initialization script is used.

Vehicle_Speed double Application Measurement of the current vehicle speed in m/s.
Specific

Vehicle_Yaw_Rate double Application Measurement of the current vehicle yaw rate in
Specific rad/s.

Vehicle_Fuel_Level double 0 — 100 Fuel level in percent.

Expected to come from the Fuel_Level_CAN_Receive
block (Section 4.4).

7. Demo Models

The provided demo models include:

e Model Template — Provides a starting point from which users can begin to implement their application
around a model that is pre-configured with Dataspeed DBW block libraries.

e Joystick Teleop — Uses the signals from a USB video game joystick to control the steering, brakes,
throttle and shifter.

e Twist Controller — Implements closed-loop control of throttle, brakes, and steering to track user-
specified forward speed and yaw-rate commands. It is recommended to reference this example model
when integrating the Accel_Control and Speed_And_Steering Control blocks (Sections 6.2 and 6.3)
into your own application-level model.

